• Title/Summary/Keyword: 인몰드코팅

Search Result 5, Processing Time 0.04 seconds

An Experimental Study of In-Mold Coating of Automotive Armrests (자동차 암레스트의 인몰드코팅에 관한 실험적 연구)

  • Park, Jong Rak;Lee, Ho Sang
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.7
    • /
    • pp.687-692
    • /
    • 2015
  • A mold design for in-mold coating was developed to achieve simultaneous coating and injection molding of an automotive armrest. The developed mold includes one core and two cavities which are composed of a substrate cavity and a coating cavity. The core was attached to a movable plate and two cavities were mounted on a plate sliding in a stationary plate. In a two-step process, the part was first injection molded and subsequently, with the aid of a sliding table, was transferred to a second cavity. The materials used were PC/ABS for substrate and two-component polyurethane for coating. The experiments were conducted by changing the flow rate to investigate mixing characteristics. As the flow rate increased, the mixing improved. Additionally, the bubbles appeared over the substrate surface decreased with an increase of the weight of injected coating material.

A Study on Mixing Characteristics of Two-component Polyurethane for In-mold Coating (인몰드 코팅을 위한 이액형 폴리우레탄의 혼합특성에 관한 해석적 연구)

  • Lee, Ho Sang;Kim, Dong Mi
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.3
    • /
    • pp.317-323
    • /
    • 2013
  • In-mold coating is a reactive fluid designed to improve the surface quality of injection molded thermoplastic substrate in functional and cosmetic properties. In this study, a mixing head for in-mold coating was designed, and mixing characteristics of two-component polyurethane flowing through runner were investigated based on flow simulations. In order to achieve uniform mixing of two components injected through straight mixing head, an impingement aftermixer was used in runner design. Semi-circular cross-section was better than circular one for runners for uniform mixing. With increasing runner length and flow rate, mixing became more uniform. In addition, the degree of mixing was more improved with decreasing viscosity of isocyanate.

Analysis for injection molding and in-mold coating of automotive armrests (자동차 암레스트의 사출성형과 인몰드코팅에 관한 해석)

  • Park, Jong-Lak;Lee, Ho-Sang
    • Design & Manufacturing
    • /
    • v.13 no.1
    • /
    • pp.48-54
    • /
    • 2019
  • Analytical and experimental study were carried out in order to achieve simultaneous coating and injection molding of an automotive armrest. A mold was designed to be included one core and two cavities, which were composed of a substrate cavity and a coating cavity. The materials used were PC/ABS for substrate and 2-component Polyurethane for coating. The predicted flow patterns were in good agreement with experimental results in injection molding and in-mold coating. Based on analysis and experiment, it was found that the optimal processing conditions were packing pressure of 90MPa and holding time of 7sec.

Development of two-component polyurethane metering system for in-mold coating (인몰드 코팅을 위한 2액형 폴리우레탄 공급장치 개발)

  • Seo, Bong-Hyun;Lee, Ho-Sang
    • Design & Manufacturing
    • /
    • v.10 no.2
    • /
    • pp.18-23
    • /
    • 2016
  • Injection molded thermoplastic parts may need to be coated to facilitate paint adhesion, or to satisfy other surface property requirements, such as appearance, durability, and weather resistance. In this paper, a two-component polyurethane metering system was developed for the simultaneous injection and surface coating of a plastic substrate. The system was composed of storage tanks, feed pumps, axial piston pumps, mixing head. The tank was designed to be double-jacket structured and fabricated for polyol and isocyanate, respectively. A temperature chamber was used to maintain the material temperature to be $80^{\circ}C$ during flowing from storage tank to mixing head. Inside the chamber, feed pump, low pressure filter, high pressure pump, high pressure filter, pressure sensor, flow meter were installed. A mixing head of L-type was used for homogeneous mixing of polyol and isocyanate. Inside the mixing head, a cartridge heater and a temperature sensor were installed to control the temperature of the materials. The flow rate of axial-piston pump was controlled by using closed-loop feedback control algorithm. The input flow-rates were compared with the measured values. The output error was 6.7% for open-loop control, whereas the error was below 2.2% for closed-loop control. In addition, the pressure generated through mixing-head nozzle increased with increasing flow rate. It was found that the pressure drop between metering pump and mixing-head nozzle was almost 10 bar.