• Title/Summary/Keyword: 인명피해

Search Result 1,726, Processing Time 0.027 seconds

A Study on the Risk Control Measures of Ship′s Collision (선박충돌사고 위험성 제어방안에 관한 연구)

  • 양원재;금종수
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.9 no.1
    • /
    • pp.51-56
    • /
    • 2003
  • The prevention of marine accidents has been a major topic in marine society for long time and various safety policies and Countermeasures have been developed and applied to prevent those accidents. In spite of these efforts, however significant marine accidents have taken place intermittently. Ship is being operated under a highly dynamic environments and many factors are related with ship's collision and those factors are interacting. So, the analysis on ship's collision rouses are very important to prepare countermeasures which will ensure the safe navigation. This study analysed the ship's collision data over the past 10 years(1991-2000), which is compiled by Korea Marine Accidents Inquiry Agency. The analysis confirmed that ‘ship's collision’ is occurred most frequently and the cause is closely related with human factor. The main purpose if this study is to propose risk control countermeasures of ship's collision. For this, the structure of human factor is analysed by the questionnaire methodology. Marine experts were surveyed based on major elements that were extracted from the human factor affecting to ship's collision FSM has been widely adopted in modeling a dynamic system which is composed of human factors. Then, the structure analysis on the rouses of ship's collision using FSM are performed. This structure model could be used in understanding and verifying the procedure of real ship's collision. Furthermore it could be used as the model to prevent ship's collision and to reduce marine accidents.

  • PDF

Construction Site Safety Management System Using ZigBee Communication (지그비 통신을 이용한 건설 현장 안전 관리 시스템)

  • Lee, ChangHo;Kim, KangHee;Kim, JiWon;Choi, SangBang
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.3
    • /
    • pp.39-51
    • /
    • 2017
  • Recently, looking at construction sites with either large or small scale, accidents like collision, fall, etc. occur often. These accidents lead to not only damage of human lives but also serious economic loss. In case of large scale constructions sites, safety management systems are used to reduce industrial accidents. However in construction sites with small scale, those systems cannot be applied due to problems such as lack of compatability and high installation expense. In this case, just by putting on safety gears can also reduce industrial accidents. Therefore, in this paper, a safety management systems that can be used at both large and small scale construction sites is proposed. This safety management system consists of a smart module, a repeater and a gateway, and a monitoring system. The smart module, which is detachable, is attached to a safety helmet. This module transfers the current status of the user to the monitoring system through the repeater and the gateway. The repeater transfers the data received from the smart module to the gateway, and the gateway sends the data from the repeater to the monitoring system. The monitoring system shows the user status to the safety supervisor by displaying the data - temperature, height, intensity of illumination, images - received from the smart module. The safety supervisor can monitor the user status in real-time and take immediate action in case of emergency through this monitoring system.

Estimation of Partial Safety Factors and Target Failure Probability Based on Cost Optimization of Rubble Mound Breakwaters (경사식 방파제의 비용 최적화에 기초한 부분안전계수 및 목표파괴확률 산정)

  • Kim, Seung-Woo;Suh, Kyung-Duck;Burcharth, Hans F.
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.22 no.3
    • /
    • pp.191-201
    • /
    • 2010
  • The breakwaters are designed by considering the cost optimization because a human risk is seldom considered. Most breakwaters, however, were constructed without considering the cost optimization. In this study, the optimum return period, target failure probability and the partial safety factors were evaluated by applying the cost optimization to the rubble mound breakwaters in Korea. The applied method was developed by Hans F. Burcharth and John D. Sorensen in relation to the PIANC Working Group 47. The optimum return period was determined as 50 years in many cases and was found as 100 years in the case of high real interest rate. Target failure probability was suggested by using the probabilities of failure corresponding to the optimum return period and those of reliability analysis of existing structures. The final target failure probability is about 60% for the initial limit state of the national design standard and then the overall safety factor is calculated as 1.09. It is required that the nominal diameter and weight of armor are respectively 9% and 30% larger than those of the existing design method. Moreover, partial safety factors considering the cost optimization were compared with those calculated by Level 2 analysis and a fairly good agreement was found between the two methods especially the failure probability less than 40%.

Engineering Characteristics of Soil Slopes Dependent on Geology - Hwangryeong Mt. District, Busan - (지질에 따른 토층사면의 토질공학적 특성 -부산 황령산지역-)

  • Kim Kyeong-Su;Lee Moon-Se;Cho Yong-Chan;Chae Byung-Gon;Lee Choon-Oh
    • The Journal of Engineering Geology
    • /
    • v.14 no.4 s.41
    • /
    • pp.487-498
    • /
    • 2004
  • There is an increasing trend of construction works in mountainous areas by the urban development in Busan that is mainly composed of mountains. The study area, Hwangryeong Mt., is one of developing sites in the urban area, too. Landslides and cut-slope failures that occur large damages of human beings and the properties are influenced by soil characteristics as well as rock properties. This study analyzed geotechnical characteristics of soil dependent on geology at Hwangryeong Mt. where a large slope failure had been occurred in 1999. Geology of the study area is composed of the Cretaceous sedimentary rocks and volcanic rocks. Soil layer of the slopes can be grouped into sand mixed with clay and silt. The cohesion is plotted between $0.001\;and\;0.066kg/cm^2$. The friction angles are distributed in the ranges between $32^{\circ}\;and\;39^{\circ}$, meaning soil bearing a high friction angle. The permeability coefficients are plotted between $2.34\times10^{-4}cm/sec\;and\;2.58\times10^{-2}cm/sec$, indicating fine sand and loose silt with a medium grade of permeability. The sedimentary rocks area shows relatively higher permeability coefficients than those volcanic rocks area.

Disaster Prevention Service Design Framework (방재서비스디자인 프레임워크 연구)

  • Ha, Kwang Soo;Pan, Younghwan
    • The Journal of the Korea Contents Association
    • /
    • v.16 no.3
    • /
    • pp.52-60
    • /
    • 2016
  • Many hidden aspects of society around the world that has been lurking as risk factors have been ultimately connected to disasters. Such connection did not just stop with massive damages to properties and loss of lives but became a serious social issue. Especially in the case for Korea, because the country has gone through abrupt economic growth which has resulted in rapid urbanization and expansion of economic scale, Korea has been caught in a vicious cycle of experiencing human and social calamities repeatedly. Due to the seriousness of such problem, there's been continued research in various fields for managing disasters, and the domain of knowledge has been expanding with complexity. The following study went beyond the perspectives of disaster prevention study, disaster prevention engineering and social sciences suggested from previous research directions in disaster and disaster prevention, and attempted an alternative research method by approaching from a service design perspective. During the process, the paper looked over the summary on disaster and service design. By applying it on disaster prevention projects, the research sets forth and discusses effective and practical disaster prevention service design. Through specific case studies, the research methodology applied was verified, and the purpose of the study was carried out in the perspective of real world applications different from textbook type discussions. It is expected that through the disaster prevention service design process and platform that were discovered during the research result, defining and understanding disaster prevention service design will be made apparent. Additionally, the research is expected to be used as a basic building block for building a visualized plan for tangible and intangible factors related to disasters before the disaster process through such proposed disaster prevention service design.

Derivation of Building Fire Safety Assessment Factors for Generating 3D Safety Status Map (3D 안전상태지도 제작을 위한 건물 화재안전 평가항목 도출)

  • Youn, Junhee;Kim, Taehoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.10
    • /
    • pp.40-47
    • /
    • 2020
  • Various technologies, systems, and legal systems are applied to prevent and quickly respond to fire disaster; nevertheless, the damages to life and property caused by fires are not reduced every year. For managing fire disaster, generating spatial information-based safety status map and procuring suitability of attribute information for each position information are essential. The safety status map is generated by deriving the fire safety status assessment factors, indexing, and locating the surveying results through various methods. In this paper, we deal with derivation of building fire safety assessment factors for 3D safety status map. At first, we survey the foreign and domestic fire assessment model cases and its factors, and analyze the applicability of Korean 3D fire safety status map. Next, assessment factors for fire safety assessment model are derived. Assessment factors are derived and categorized by their information collecting activity; factors that can be accessed through basic building information and factors that can be accessed through field survey. As a derivation result, 14 assessment factors were derived over five categories(Industry Risk, Structural Risk, Fire Fighting Facility, Fire Dangerousness, Fire Response Status).

Priority Analysis for Infrastructure Recovery from Volcanic Disaster (사회기반시설의 화산재해 복구 우선순위 산정)

  • Park, Hyung Keun;Kang, Kyo Seok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.3
    • /
    • pp.989-998
    • /
    • 2014
  • Recently volcanic eruptions and activities occurring in many parts of world have become a common global concern to many countries. The severity of these Volcanic disasters, such as of Mt. Eyjafjallajokull in Iceland and Mt. Merapi in Indonesia, have caused damages and causalities reaching astronomical levels. The infrastructure is categorized into 18sections that appropriately reflecting the survey data collected from various government agents, current inhabitant and engineers to accumulate a database on the priorities and preferences of restoring and reconstructing many kinds of infrastructure and facilities. The survey data was collect by using the "Likert 5 Scale Method" which emphasized the importance and priority of reconstruction and restoration for the specific facilities and infrastructures. The data was corrugated, organized and used in plotting and planning a strategic recovery agenda. The survey results were analyzed and verified to ensure the validity and reliability of the data by using chi-square test. This paper presents that recovery period and recovery cost to the total damage of infrastructure and facilities were used to make a recovery network with implemented construction management method. The research is expected that a more efficient and prompt recovery protocol and recovery plan can be executed and can be use as a reference and database.

A Study on Role Assignment between the Ministries of Government for the Research and Development on Disaster Prevention (방재 연구개발 분야의 정부 부처간 역할 조정에 관한 연구)

  • Park, Jung-Han;Choi, Gyu-Hyun;Kim, Young-Soo;Jung, Seong-Hoon;Lee, Sang-Houck;Lee, Pyeong-Koo;Lee, Woan-Kyu
    • Economic and Environmental Geology
    • /
    • v.41 no.3
    • /
    • pp.359-372
    • /
    • 2008
  • A number of researches on disaster risk reduction using the most advanced equipments and scientific technologies have been performed to minimize the damage of property and to protect human life. Although the Korean government is trying to enlarge the research area for disaster risk reduction, the investment size and the applicable results in this area have stayed in the lower level comparing to other scientific fields in Korea and the same field in advanced countries. However, the National Emergency Management Agency (NEMA), a government Agency which is responsible for disaster management coordination, was established in June 2004 establishing an efficient and well-organized system to cope with various disasters. In this study, investment size by the government was evaluated and associated areas were also identified. We also analyzed the roles on research and development for disaster risk reduction among different government Ministries were analyzed and role assignment to each Ministry was proposed. The role assignment has been concreted by conducting the process of approval in the government.

Application of Seismic Tomography to the Inverstigation of Underground Structure in Gupo Train Accident Area (구포 기차 전복사고 지역의 지반상태 파악을 위한 탄성파 토모그래피 응용)

  • 김중열;장현삼;김유성;현혜자;김기석
    • The Journal of Engineering Geology
    • /
    • v.5 no.1
    • /
    • pp.1-20
    • /
    • 1995
  • A train overturn accident occurred on March 1993 in the Gupo area, northern part of Pusan, unfortunately had taken a heavy toll of lives and caused a great loss of property as well. The reasons for the subsidence of the basement under the railroads, which presumed to be the main cause of the accident, have been investigated from many different angles, including conventional geotechnical investigation methods. The deduced nuin reasons of the subsidence were: 1. blasting for tunnel excavation (NATM) at about 39 meter under the railroads, and 2. unexpected change of bedrock conditions along the direction of tunnel. But this accident was derived nrranlv from the lack of geological and geotechnical information under railroad area because it was impossible to drill beneath the railroads. This paper introduces a new geophysical survey techniqueseisrnic geotomography, and shows some results of the method applying to investigate the underground structure of the accident area. This method not only overcomes the unfavourable environment which many conventional investigation methods cannot face, but produces an image of underground structure with high resolution. Furthermore, the outputs from geotomogaphic analysis could provide very valuable in-situ basic parameters (like seismic velocities, elastic moduli, etc.) which is essential to the design and construction.

  • PDF

A Comparative Study on the Effect of Fire Retardancy of the Plywood Treated by Ammonium Sulphate and Monoammonium Phosphate (황산암모늄과 제 1 암모늄처리(處理) 합판(合板)의 내화효과에 관(關)한 비교연구(比較硏究))

  • Lee, Phil-Woo;Kim, Cheol-San
    • Journal of the Korean Wood Science and Technology
    • /
    • v.11 no.3
    • /
    • pp.23-30
    • /
    • 1983
  • This experiment was carried out for diminishing the material loss and the damage of human life due to the fire disaster by treating plywood with fire retardant chemical solution. At this study, we observed and measured chemical retention, burning point, maximum flame length, flame exausted time, carbonized area, and weight loss of plywood treated by each solution of ammonium sulphate [$(NH_4)_2SO_4$] and monoammonium phosphate [$NH_4H_2PO_4$]. Obtained results at the study may be summarized as follows: 1. In case of monoammonium phosphate-treated plywood, every tested item of fire retardancy was shown more excellent at the 25% chemical concentration and shown also at 9 hours treatment except maximum flame length compared with ammonium sulphate-treated plywood. 2. However in case of ammonium sulphate-treated plywood, 6 hours treatment of fire retardancy was better than 9 hours treating time. 3. Monoammonium phosphate was generally better than ammonium sulphate in every tested item.

  • PDF