• Title/Summary/Keyword: 인공지능 학습

Search Result 1,632, Processing Time 0.029 seconds

Design of an Intelligent Tutoring System Based on the Ontology of Procedural Knowledge (절차 지식 온톨로지 기반 지능형 교수 시스템 설계)

  • Yu, Jeong-Su
    • 한국정보교육학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.71-75
    • /
    • 2007
  • 오늘날 지능형 교수 시스템은 과거와는 달리 전문영역 지식, 학습자 지식과 융통적인 개별 학습과 개인교수를 지원하기 위한 교수 전략에 대한 지식이 사용되고 있다. 학습자들이 배웠던 내용이 무엇인지를 설명하고 가르칠 도메인 지식을 전문영역 지식으로 표현한다. 교수법 모듈은 학습을 제어하거나 가르치기 위한 모든 결정을 한다. 학생 모형은 학습자의 지식을 기술하고 학습자 개개인에 대한 특정한 정보를 저장한다. 본 논문에서는 지능형 교수 시스템의 구성 요소인 학습자 모형의 지식을 기존의 인공지능에서의 지식 표현 기법인 생성 시스템의 절차 지식을 온톨로지를 사용하여 설계하였다.

  • PDF

Research on the development of an AI-based customized learning support model : Focusing on the university class environment (인공지능 기반 맞춤형 학습 지원 모형 개발 연구 : 대학교 수업 환경을 중심으로)

  • Euncheol Lee;Gayoung Lee
    • Journal of Christian Education in Korea
    • /
    • v.77
    • /
    • pp.225-249
    • /
    • 2024
  • Research Purpose : Based on artificial intelligence, this study considers learners' characteristics, learning content, and individual learning, and analyzes the collected learning data to develop a model that supports customized learning for individual learners. Research content and method : In order to achieve the research purpose, the literature was analyzed to investigate the structure of customized learning support, learning data analysis, and learning activities, and based on the investigated data, the area and detailed components of the customized learning support model were derived. did. A draft model was constructed through literature analysis, and the first expert Delphi survey was conducted on the draft model with five experts. The model was revised by reflecting the results of the first Delphi, and the validity of the revised model was verified through the second expert Delphi. The model was elaborated through expert Delphi, and the final model was constructed through this. Conclusion and Recommendation : Through research, customized learning support area, class management system area, and learning analysis data area were formed, and detailed elements were derived for each area. The results of this study provide basic data that can be used as a reference for constructing a customized learning support system based on artificial intelligence, taking into account the university's class environment.

Measuring gameplay similarity between human and reinforcement learning artificial intelligence (사람과 강화학습 인공지능의 게임플레이 유사도 측정)

  • Heo, Min-Gu;Park, Chang-Hoon
    • Journal of Korea Game Society
    • /
    • v.20 no.6
    • /
    • pp.63-74
    • /
    • 2020
  • Recently, research on automating game tests using artificial intelligence agents instead of humans is attracting attention. This paper aims to collect play data from human and artificial intelligence and analyze their similarity as a preliminary study for game balancing automation. At this time, constraints were added at the learning stage in order to create artificial intelligence that can play similar to humans. Play datas obtained 14 people and 60 artificial intelligence by playing Flippy bird games 10 times each. The collected datas compared and analyzed for movement trajectory, action position, and dead position using the cosine similarity method. As a result of the analysis, an artificial intelligence agent with a similarity of 0.9 or more with humans was found.

Personal Information life Cycle Model Considering the Learning Cha racteristics of Artificial Intelligence (인공지능의 학습 특성을 고려한 개인정보 라이프 사이클 모델)

  • Jaeyoung Jang;Jong-Min Kim
    • Convergence Security Journal
    • /
    • v.24 no.2
    • /
    • pp.47-53
    • /
    • 2024
  • The traditional personal information life cycle model, primarily tailored to conventional systems, is inherently unsuitable for comprehending the nuances of personal information flow within artificial intelligence frameworks and for formulating effective protective measures. Therefore, this study endeavors to introduce a personal information life cycle model specifically designed for artificial intelligence (AI). This paper presents a personal information life cycle model suitable for artificial intelligence, which includes the stages of collection, retention, learning, use, and destruction/suspension, along with the re-learning process for destruction/suspension. Subsequently, we compare the performance of these existing models (such aspersonal information impact assessment and the ISMS-P model) with the newly proposed model. This underscores the superiority of our proposed model in comprehensively understanding the personal information flow in AI and establishing robust protective measures.

A Study on the PBL-based AI Education for Computational Thinking (컴퓨팅 사고력 향상을 위한 문제 중심학습 기반 인공지능 교육 방안)

  • Choi, Min-Seong;Choi, Bong-Jun
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.22 no.3
    • /
    • pp.110-115
    • /
    • 2021
  • With the era of the 4th Industrial Revolution, education on artificial intelligence is one of the important topics. However, since existing education is aimed at knowledge, it is not suitable for developing the active problem-solving ability and AI utilization ability required by artificial intelligence education. To solve this problem, we proposes PBL-based education method in which learners learn in the process of solving the presented problem. The problem presented to the learner is a completed project. This project consists of three types: a classification model, the training data of the classification model, and the block code to be executed according to the classified result. The project works, but each component is designed to perform a low level of operation. In order to solve this problem, the learners can expect to improve their computational thinking skills by finding problems in the project through testing, finding solutions through discussion, and improving to a higher level of operation.

Preliminary Test of Google Vertex Artificial Intelligence in Root Dental X-ray Imaging Diagnosis (구글 버텍스 AI을 이용한 치과 X선 영상진단 유용성 평가)

  • Hyun-Ja Jeong
    • Journal of the Korean Society of Radiology
    • /
    • v.18 no.3
    • /
    • pp.267-273
    • /
    • 2024
  • Using a cloud-based vertex AI platform that can develop an artificial intelligence learning model without coding, this study easily developed an artificial intelligence learning model by the non-professional general public and confirmed its clinical applicability. Nine dental diseases and 2,999 root disease X-ray images released on the Kaggle site were used for the learning data, and learning, verification, and test data images were randomly classified. Image classification and multi-label learning were performed through hyper-parameter tuning work using a learning pipeline in vertex AI's basic learning model workflow. As a result of performing AutoML(Automated Machine Learning), AUC(Area Under Curve) was found to be 0.967, precision was 95.6%, and reproduction rate was 95.2%. It was confirmed that the learned artificial intelligence model was sufficient for clinical diagnosis.

A Study on Deep learning Configuration Management System using Block chain (블록체인을 활용한 딥러닝 형상관리 시스템에 대한 연구)

  • Baeg, Su-Hwan;Lee, Jace;Shin, Young-Tae
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2021.05a
    • /
    • pp.234-237
    • /
    • 2021
  • 최근 인공지능에대한 관심과 COVID-19의 영향으로 인공지능을 적용하려는 연구가 계속되고 있다. 인공지능 학습 방식 중 딥러닝에서는 학습 결과에 따라 가중치를 두며 지속적인 학습을 수행한다. 이때 사용하는 가중치에 따라 학습 능력이 향상되게 되지만, 과다 학습으로 인한 퇴화 현상과 잘못된 결과 도출이 되는 경우가 발생한다. 이를 해결하기 위해 본 논문에서는 문제를 해결하기 위해 비연속적 PoW 합의방식을 사용한 블록체인에 가중치와 학습 결과를 지속적으로 보관하여 형상관리를 할 수 있는 시스템을 설계하였다.

Strategy of Reinforcement Learning in Artificial Life (인공생명의 연구에 있어서 강화학습의 전략)

  • 심귀보;박창현
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2001.05a
    • /
    • pp.257-260
    • /
    • 2001
  • 일반적으로 기계학습은 교사신호의 유무에 따라 교사학습과 비교사학습, 그리고 간접교사에 의한 강화학습으로 분류할 수 있다. 강화학습이란 용어는 원래 실험 심리학에서 동물의 학습방법 연구에서 비롯되었으나, 최근에는 공학 특히 인공생명분야에서 뉴럴 네트워크의 학습 알고리즘으로 많은 관심을 끌고 있다. 강화학습은 제어기 또는 에이전트의 행동에 대한 보상을 최대화하는 상태-행동 규칙이나 행동발생 전략을 찾아내는 것이다. 본 논문에서는 최근 많이 연구되고 있는 강화학습의 방법과 연구동향을 소개하고, 특히 인공생명 연구에 있어서 강하학습의 중요성을 역설한다.

  • PDF

Control of Intelligent Characters using Reinforcement Learning (강화학습을 이용한 지능형 게임캐릭터의 제어)

  • Shin, Yong-Woo
    • Journal of Internet Computing and Services
    • /
    • v.8 no.5
    • /
    • pp.91-97
    • /
    • 2007
  • Game program had been classed by 3D or on-line game etc, and engine and game programming simply, But, game programmer's kind more classified new, Artifical Intelligence game programmer's role is important. This paper makes game character study and moved by intelligence using reinforcement learning algorithm. Fought with character enemy using developed game, Confirmed whether embodied game character is facile by intelligence, As result of an experiment, we know, studied character defends excellently than randomly moved character.

  • PDF

Analysis of Faculty Perceptions and Needs for the Implementation of AI based Adaptive Learning in Higher Education (대학 교육에서 인공지능 기반 적응형 학습 구현을 위한 교수자 인식 및 요구분석)

  • Shin, Jong-Ho;Shon, Jung-Eun
    • Journal of Digital Convergence
    • /
    • v.19 no.10
    • /
    • pp.39-48
    • /
    • 2021
  • This study aimed to analyze the level of professors' understanding and perception of adaptive learning and proposed how college can implement successful adaptive learning in college classes. For research purposes, online survey was conducted by 162 professors of A university in capital region. As a result, professors seemed to feel pressure to provide students personalized feedback and gave concerned that students don't study enough in advance before participating in class. It was also found that professors realized that they have low level of understanding about adaptive learning, while they revealed intention to make use of adaptive learning in their class. They also answered that adaptive learning system is the most helpful support for encouraging professors to apply adaptive learning in real class. We proposed what is required to encourage professor to implement adaptive learning in their class.