• 제목/요약/키워드: 인공지능 학습

검색결과 1,632건 처리시간 0.026초

퍼지집합이론 및 뉴로-퍼지기법을 이용한 RMR 값의 추론 (Inference of RMR Value Using Fuzzy Set Theory and Neuro-Fuzzy Techniques)

  • 배규진;조만섭
    • 터널과지하공간
    • /
    • 제11권4호
    • /
    • pp.289-300
    • /
    • 2001
  • 터널의 설계에는 지반조사 자료의 부정확성과 평가의 애매성 그리고 자료수집 과정의 오류(observer error)등이 내재되어 있다. 그러므로 터널의 안정성과 경제적인 시공을 위해서는 시공 중 막장면의 조사가 매우 중요한 역할을 한다. 본 연구는 막장면 조사 시 지반의 고유 특성을 보다 정확하게 평가하고, 조사자의 주관성을 최소화시키기 위하여 수행되었다. 이러한 목적을 위하여 막장관찰 자료로부터 RMR값을 추론하고자 인공지능기법 중 퍼지집합이론과 뉴로-퍼지기법을 적용하였고, 46개의 학습자료에 대해 원래의 RMR값과 퍼지이론 및 뉴로저지기법의 추론에 의한 RM $R_{_FU}$ 및 RM $R_{_NF}$값의 상관성을 분석하였다. 본 연구의 결과는 원래의 RMR값과 퍼지추론에 의한 RM $R_{_FU}$값 및 뉴로-퍼지기법에 의한 RM $R_{_NF}$값의 상관계수가 각각 |R|= 0.96과 |R|=0.95로 상관성이 우수한 것으로 조사되었다. 이 결과로부터 암반평가를 위한 퍼지집합이론 및 뉴로-피지기법의 적용성이 충분함을 검증할 수 있었다.할 수 있었다.

  • PDF

포스트휴먼 시대의 로봇과 인간의 윤리 (The Ethics of Robots and Humans in the Post-Human Age)

  • 유은순;조미라
    • 한국콘텐츠학회논문지
    • /
    • 제18권3호
    • /
    • pp.592-600
    • /
    • 2018
  • 로봇의 영역이 인간의 정신적, 감정적 노동까지 대신하는 지능형 로봇으로 진화하면서 인간과 로봇 관계에서 발생할 수 있는 '로봇윤리'가 중요한 이슈로 떠오르고 있다. 본 연구는 포스트휴먼 시대에 필요한 인간과 로봇의 윤리 성찰을 고찰하고자 하며, 그 중심 내용은 다음과 같다. 첫째, 로봇의 윤리적 실천 가능성에 도전하는 윤리 소프트웨어 개발 사례를 통해 오로지 강제 입력된 윤리 코드만으로 로봇이 과연 옳고 그름을 판단할 수 있는가라는 문제의식에서 출발한다. 둘째, 로봇윤리는 인간의 편향성이 내재된 데이터를 학습했을 때 발생할 수 있는 비윤리적 문제들을 고려하고, 더불어 국가와 문화 간의 윤리적 상대주의를 인정해야 한다. 셋째, 로봇윤리는 로봇을 위한 윤리 강령만이 아니라, 인간과 로봇이 서로 공진화할 수 있는 새로운 개념의 '인간 윤리'가 전제되어야 한다.

Split-Attention 백본 네트워크를 활용한 차선 인식에 관한 연구 (A Study on Lane Detection Based on Split-Attention Backbone Network)

  • 송인서;이선우;권장우;원종훈
    • 한국ITS학회 논문지
    • /
    • 제19권5호
    • /
    • pp.178-188
    • /
    • 2020
  • 본 논문에서는 split-attention 네트워크를 백본으로 특징을 추출하는 차선인식 CNN 네트워크를 제안한다. split-attention은 CNN의 특징 추출 과정에서 feature map의 각 channel에 가중치를 부여하는 방법으로, 빠르게 변화하는 자동차의 주행 환경에서 안정적으로 이미지의 특징을 추출할 수 있다. Tusimple 데이터 셋을 활용하여 본 논문에서 제안하는 네트워크를 학습·평가하였으며, 백본 네트워크의 레이어 수에 따른 성능 변화를 비교·분석 하였다. 평가 결과 최대 96.26%의 정확도로 최신 연구에 준하는 결과를 얻었으며, FP의 경우 0.0234(2.34%)로 비교 연구 중 가장 좋은 결과를 보여준다. 따라서, 실제 차량의 주행 환경 등에서도 본 연구에서 제안하는 모델을 사용하여 오인식 없이 안정적인 차선 인식이 가능하다.

LSTM/RNN을 사용한 감정인식을 위한 스택 오토 인코더로 EEG 차원 감소 (EEG Dimensional Reduction with Stack AutoEncoder for Emotional Recognition using LSTM/RNN)

  • ;임창균
    • 한국전자통신학회논문지
    • /
    • 제15권4호
    • /
    • pp.717-724
    • /
    • 2020
  • 감성 컴퓨팅은 인간의 상호 작용에서 중요한 역할을 하기 때문에 인간을 인식하는 인공 지능을 통해 감정을 이해하고 식별한다. 우울증, 자폐증, 주의력 결핍 과잉 행동 장애 및 게임 중독과 같은 정신 질환을 잘 이해함으로써 감정과 관련된 문제들을 잘 관리할 수 있을 것이다. 이러한 문제들을 해결하기 위해 감정 인식을 위한 다양한 연구가 수행되었는데 기계학습을 적용하는데 있어서는 알고리즘의 복잡성을 줄이고 정확도를 향상시키기 위한 노력이 필요하다. 본 논문에서는 이러한 노력중의 하나로 Stack AutoEncoder (SAE)를 이용하여 차원을 감소하는 방법과 Long-Short-Term-Memory/Recurrent Neural Networks (LSTM / RNN) 분류를 이용한 감성 분류에 대해 연구한 결과를 제시한다. 제안된 방법은 모델의 복잡성을 줄이고 분류기의 성능을 크게 향상시킨 결과를 가져왔다.

XR 음향 콘텐츠 활용을 위한 감성-뇌연결성 분석 연구 (Brain Correlates of Emotion for XR Auditory Content)

  • 박상인;김종화;박순용;문성철
    • 방송공학회논문지
    • /
    • 제27권5호
    • /
    • pp.738-750
    • /
    • 2022
  • 본 논문은 XR 콘텐츠나 인터페이스 환경에서 활용할 수 있는 음향 자극의 종류를 고찰하고, 청각 자극 기반의 감성 유발이 뇌과학적으로 실효성을 가지는지에 대해 논의하였다. 외부 청각자극, 감성변화 및 뇌연결성의 상관관계 규명에 초점을 맞추어, XR 환경에서 사용자 경험을 제고하기 위한 기계학습 기반 개인 맞춤형 사운드 트랙 제공 서비스 개발이 필요하다는 시사점을 도출하였다. 또한, 짧은 음향자극으로 감성을 유발할 수 있는지를 테스트하여 청각자극에 의해 유발된 각성상태에서 우측 전두엽이나 전두엽, 두정엽, 후두엽 네트워크에서 뇌의 기능적 연결성이 강화되고 이완시에는 상반된 패턴을 보이는 것을 확인하였다. 본 연구에서 도출된 결과는 보다 입체적인 XR 상호작용 경험을 제시하고 사용자의 XR 인지수용성을 제고하여, 현장에서 실질적으로 적용될 수 있는 초실감 XR 사운드 바이오피드백 시스템 개발에 활용될 수 있을 것이다.

소프트웨어 개발 인재 양성을 위한 부트캠프 사례 연구 (A Case Study of Bootcamp Program for Software Developer)

  • 곽찬희;이준영
    • 실천공학교육논문지
    • /
    • 제14권1호
    • /
    • pp.11-18
    • /
    • 2022
  • 소프트웨어 개발 인력의 필요성이 높아지면서, 다양한 교육 프로그램들이 등장하고 있으며, 그 중 신병캠프를 의미하는 부트캠프(bootcamp) 스타일의 교육 프로그램의 인기가 두드러지고 있다. 하지만 기존의 소프트웨어 개발 교육 프로그램들과는 운영 방식이나 형태가 완전히 다름에도 불구하고, 교육 프로그램으로써 부트캠프를 분석한 연구는 부족한 실정이다. 이에 본 연구는 부트캠프형 소프트웨어 개발자 교육에 대한 사례 연구를 통해 해당 교육 프로그램의 주요 요소를 도출하고자 하였다. 이를 위해 A사의 부트캠프 프로그램 X의 수료자 7명을 대상으로 인터뷰를 진행한 뒤, 부트캠프형 교육의 7가지 특징을 도출하였다. 집중 이론 교육, 성장과 성취감, 팀 프로젝트 기반 학습, 커뮤니티 특성, 집단 압력, 피로도와 압박감, 비대면 특수성. 도출한 특징을 바탕으로 부트캠프형 교육의 장점과 개선점에 대해 기술하고, 부트캠프형 소프트웨어 개발자 교육이 나아갈 방향에 대해 논하였다.

랜덤 포레스트를 활용한 만족도 사전조사에 따른 교육 역량 예측 분석 (An Analysis of Educational Capacity Prediction according to Pre-survey of Satisfaction using Random Forest)

  • 남기훈
    • 문화기술의 융합
    • /
    • 제8권6호
    • /
    • pp.487-492
    • /
    • 2022
  • 대학들은 급변하는 사회 환경에 적합한 교육역량 수준을 높이기 위해 다양한 방법들을 찾고 있다. 본 논문에서는 조사 항목을 수정, 보완한 만족도 사전조사를 개강 전에 실행하여 학업성취도를 높이고 전공 이탈자의 비율을 낮춰 교육 성과를 높이는 방안을 제안한다. 일반적인 만족도 조사 이후에 시행되는 교육품질 개선(CQI) 방식을 보완하고자 만족도 사전조사를 시행하였다. 학생역량을 강화하기 위해 설계가 진행 중인 인공지능형 메디치 플랫폼에 적용할 수 있는 머신러닝 기법의 랜덤 포레스트를 활용하여 중요한 데이터의 예측 및 분석을 가능하게 하였다. 만족도 사전조사 데이터들을 전처리하여 수강 신청 학생들의 정보를 설명 변수로 정의하고 분류하여 모델 생성 및 학습하였다. 실험 환경은 주피터 노트북 3.7.7, Python 3.7에서 관련 알고리즘과 사이킷런(sklearn) 라이브러리를 함께 사용하였다. 제안하는 방안의 결과를 수업에 반영하여 수업 후에 진행하는 교육 만족도 조사의 변화와 중도 탈락생 수의 동향을 비교 분석하였다.

기계학습을 활용한 모바일 반도체 제조 공정에서 동작 전압 예측 (Operating Voltage Prediction in Mobile Semiconductor Manufacturing Process Using Machine Learning)

  • 백인환;장승우;김광수
    • 반도체디스플레이기술학회지
    • /
    • 제22권1호
    • /
    • pp.124-128
    • /
    • 2023
  • 반도체 양산을 진행하며 얻어지는 여러 공정 데이터들로 사용 전압을 예측하여 에너지 효율적인 제품을 위한 목적으로 연구를 시작했다. 각각의 feature들 단독으로 전압을 예측하기 어려웠던 문제를 머신 러닝을 통해, 특히 Ensemble model을 이용함으로써 단일 모델보다 정확한 예측을 할 수 있었다. 더욱 중요한 시사점으로는 feature importance 분석을 통해 모델 예측에 영향이 큰 feature와 작은 feature에 대한 분석이다. 영향도가 높은 feature를 통해 비슷한 계열의 측정값을 늘리고, 낮은 feature 들의 문제점을 개선함으로써 차세대 제품에서 더욱 정확도 높은 모델을 위한 발판을 마련할 수 있었다.

  • PDF

시각장애인 대상 음성태그리더기의 사용성 평가 및 개선 방안 연구 (A Study on the Usability Evaluation and Improvement of Voice Tag Reader for an Visually Impaired Person)

  • 김소라;조용윤;용태희
    • 사물인터넷융복합논문지
    • /
    • 제9권2호
    • /
    • pp.1-9
    • /
    • 2023
  • 이 연구는 시각장애인들의 생활 편의성 증진을 위해 음성태그리더기의 사용성 평가를 통한 제품의 사용성 개선을 위한 목적으로 수행되었다. 사용성의 원칙과 시각장애인의 특수성을 고려한 평가 모형에 근거하여 19개의 평가 항목에 대한 지각된 사용성 평가가 실시되었다. 제안된 시스템의 베타 버전과 정식 버전에 대한 조사에 1번 이상 참여한 총 50명의 시각장애인이 분석 대상에 포함되었다. 비모수 통계방법을 사용하여 분석한 결과, 음성태그리더기의 안전성과 음성 및 음질, 음성정보의 정확성에 대해서는 비교적 만족한 편이었으나. 리더기의 크기 및 무게, 휴대와 보관의 편의성을 포함한 사용상의 효율성 측면에서는 낮은 평가를 받은 것으로 나타났다. 사용성 향상을 위해 제품 사용을 위한 절차가 보다 간소화될 필요가 있으며, 일반적으로 자주 사용하는 사물에 대한 태그는 사전에 입력을 시켜서 보급하는 것이 도움이 될 것으로 판단된다.

효율적인 교통 체계 구축을 위한 Conv-LSTM기반 사거리 모델링 및 교통 체증 예측 알고리즘 연구 (Conv-LSTM-based Range Modeling and Traffic Congestion Prediction Algorithm for the Efficient Transportation System)

  • 이승용;서부원;박승민
    • 한국전자통신학회논문지
    • /
    • 제18권2호
    • /
    • pp.321-327
    • /
    • 2023
  • 인공 지능이 발전함에 따라 예측 시스템은 우리의 삶에 필수적인 기술 중 하나로 자리를 잡았다. 이러한 기술의 성장에도 불구하고, 21세기 사거리 교통 체증은 계속해서 문제 되어 왔다. 본 논문에서는 Conv-LSTM(: Convolutional-Long Short-Term Memory) 알고리즘을 이용한 사거리 교통 체증 예측 시스템을 제안한다. 제안한 시스템은 교통 체증이 발생하는 사거리에 시간대별 교통 정보를 학습한 데이터를 모델링 한다. 시간의 흐름에 따라 기록된 교통량 데이터로 교통 체증을 예측하며. 예측된 결과를 기반으로 사거리 교통 신호를 제어하고, 일정한 교통량으로 유지한다. VDS(: Vehicle Detection System)센서를 활용하여 도로 혼잡도 데이터를 정의하고, 교통을 원활하게 하기 위하여 각각의 교차로를 Conv-LSTM 알고리즘기반 네트워크 시스템으로 구성하였다.