• Title/Summary/Keyword: 인공지능 영상인식

Search Result 180, Processing Time 0.037 seconds

AI Announcer : Information Transfer Software Using Artificial Intelligence Technology (AI 아나운서 : 인공지능 기술을 이용한 정보 전달 소프트웨어)

  • Kim, Hye-Won;Lee, Young-Eun;Lee, Hong-Chang
    • Annual Conference of KIPS
    • /
    • 2020.11a
    • /
    • pp.937-940
    • /
    • 2020
  • 본 논문은 AI 기술을 기반으로 텍스트 스크립트를 자동으로 인식하고 영상 합성 기술을 응용하여 텍스트 정보를 시각화하는 AI 아나운서 소프트웨어 연구에 대하여 기술한다. 기존의 AI 기반 영상 정보 전달 서비스인 AI 앵커는 텍스트를 인식하여 영상을 합성하는데 오랜 시간이 필요하였으며, 특정 인물 이미지로만 영상 합성이 가능했기 때문에 그 용도가 제한적이었다. 본 연구에서 제안하는 방법은 Tacotron 으로 새로운 음성을 학습 및 합성하여, LRW 데이터셋으로 학습된 모델을 사용하여 자연스러운 영상 합성 체계를 구축한다. 단순한 얼굴 이미지의 합성을 개선하고 다채로운 이미지 제작을 위한 과정을 간략화하여 다양한 비대면 영상 정보 제공 환경을 구성할 수 있을 것으로 기대된다.

Performance Enhancement Algorithm using Supervised Learning based on Background Object Detection for Road Surface Damage Detection (도로 노면 파손 탐지를 위한 배경 객체 인식 기반의 지도 학습을 활용한 성능 향상 알고리즘)

  • Shim, Seungbo;Chun, Chanjun;Ryu, Seung-Ki
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.18 no.3
    • /
    • pp.95-105
    • /
    • 2019
  • In recent years, image processing techniques for detecting road surface damaged spot have been actively researched. Especially, it is mainly used to acquire images through a smart phone or a black box that can be mounted in a vehicle and recognize the road surface damaged region in the image using several algorithms. In addition, in conjunction with the GPS module, the exact damaged location can be obtained. The most important technology is image processing algorithm. Recently, algorithms based on artificial intelligence have been attracting attention as research topics. In this paper, we will also discuss artificial intelligence image processing algorithms. Among them, an object detection method based on an region-based convolution neural networks method is used. To improve the recognition performance of road surface damage objects, 600 road surface damaged images and 1500 general road driving images are added to the learning database. Also, supervised learning using background object recognition method is performed to reduce false alarm and missing rate in road surface damage detection. As a result, we introduce a new method that improves the recognition performance of the algorithm to 8.66% based on average value of mAP through the same test database.

GPU based Fast Recognition of Artificial Landmark for Mobile Robot (주행로봇을 위한 GPU 기반의 고속 인공표식 인식)

  • Kwon, Oh-Sung;Kim, Young-Kyun;Cho, Young-Wan;Seo, Ki-Sung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.5
    • /
    • pp.688-693
    • /
    • 2010
  • Vision based object recognition in mobile robots has many issues for image analysis problems with neighboring elements in dynamic environments. SURF(Speeded Up Robust Features) is the local feature extraction method of the image and its performance is constant even if disturbances, such as lighting, scale change and rotation, exist. However, it has a difficulty of real-time processing caused by representation of high dimensional vectors. To solve th problem, execution of SURF in GPU(Graphics Processing Unit) is proposed and implemented using CUDA of NVIDIA. Comparisons of recognition rates and processing time for SURF between CPU and GPU by variation of robot velocity and image sizes is experimented.

A Comparison and Analysis of Deep Learning Framework (딥 러닝 프레임워크의 비교 및 분석)

  • Lee, Yo-Seob;Moon, Phil-Joo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.12 no.1
    • /
    • pp.115-122
    • /
    • 2017
  • Deep learning is artificial intelligence technology that can teach people like themselves who need machine learning. Deep learning has become of the most promising in the development of artificial intelligence to understand the world and detection technology, and Google, Baidu and Facebook is the most developed in advance. In this paper, we discuss the kind of deep learning frameworks, compare and analyze the efficiency of the image and speech recognition field of it.

Visual Verb and ActionNet Database for Semantic Visual Understanding (동영상 시맨틱 이해를 위한 시각 동사 도출 및 액션넷 데이터베이스 구축)

  • Bae, Changseok;Kim, Bo Kyeong
    • The Journal of Korean Institute of Next Generation Computing
    • /
    • v.14 no.5
    • /
    • pp.19-30
    • /
    • 2018
  • Visual information understanding is known as one of the most difficult and challenging problems in the realization of machine intelligence. This paper proposes deriving visual verb and construction of ActionNet database as a video database for video semantic understanding. Even though development AI (artificial intelligence) algorithms have contributed to the large part of modern advances in AI technologies, huge amount of database for algorithm development and test plays a great role as well. As the performance of object recognition algorithms in still images are surpassing human's ability, research interests shifting to semantic understanding of video contents. This paper proposes candidates of visual verb requiring in the construction of ActionNet as a learning and test database for video understanding. In order to this, we first investigate verb taxonomy in linguistics, and then propose candidates of visual verb from video description database and frequency of verbs. Based on the derived visual verb candidates, we have defined and constructed ActionNet schema and database. According to expanding usability of ActionNet database on open environment, we expect to contribute in the development of video understanding technologies.

Character Recognition and Search for Media Editing (미디어 편집을 위한 인물 식별 및 검색 기법)

  • Park, Yong-Suk;Kim, Hyun-Sik
    • Journal of Broadcast Engineering
    • /
    • v.27 no.4
    • /
    • pp.519-526
    • /
    • 2022
  • Identifying and searching for characters appearing in scenes during multimedia video editing is an arduous and time-consuming process. Applying artificial intelligence to labor-intensive media editing tasks can greatly reduce media production time, improving the creative process efficiency. In this paper, a method is proposed which combines existing artificial intelligence based techniques to automate character recognition and search tasks for video editing. Object detection, face detection, and pose estimation are used for character localization and face recognition and color space analysis are used to extract unique representation information.

Vision-based Self Localization Using Ceiling Artificial Landmark for Ubiquitous Mobile Robot (유비쿼터스 이동로봇용 천장 인공표식을 이용한 비젼기반 자기위치인식법)

  • Lee Ju-Sang;Lim Young-Cheol;Ryoo Young-Jae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.5
    • /
    • pp.560-566
    • /
    • 2005
  • In this paper, a practical technique for correction of a distorted image for vision-based localization of ubiquitous mobile robot. The localization of mobile robot is essential and is realized by using camera vision system. In order to wide the view angle of camera, the vision system includes a fish-eye lens, which distorts the image. Because a mobile robot moves rapidly, the image processing should he fast to recognize the localization. Thus, we propose the practical correction technique for a distorted image, verify the Performance by experimental test.

An Intelligent Robot Vision Framework (지능형 로봇 비전 프레임워크: VisionNEO)

  • Jang, Se-In;Park, Choong-Shik;Woo, Young-Woon;Kim, Kwang-Baek
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.05a
    • /
    • pp.429-432
    • /
    • 2009
  • 오늘날 지능형 로봇은 국, 내외로 많은 관심을 받고 있는 분야이다. 지능형 로봇이란 외부환경을 인식하고 스스로 판단하여 자율적으로 동작을 하는 로봇을 의미한다. 이에 대한 연구 개발이 활성화 됨에 따라 로봇 소프트웨어 개발을 효과적으로 지원하기위한 로봇 소프트웨어 플랫폼에 대한 연구가 활발해지고 있다. 시시각각 변화하는 환경에서 민감하게 반응하기 위해서는 시각센서를 이용하여야 하고, 자신의 행위를 적절히 대응시키기 위해서는 주변 상황과 알맞은 행동을 추론하고 학습해야 한다. 본 연구에서는 인공지능 규칙처리 추론엔진을 토대로 한 NEO 시스템에 영상 처리 시스템을 올려 지능형 로봇을 제어하는 루틴을 추가한 VisionNEO를 개발하였다. 그리하여 주변 환경을 이해하고 알맞은 행동을 추론, 학습해 지식을 축적하는 지능형 로봇 비전 프레임워크를 제안한다.

  • PDF

Artificial intelligence (AI) parking control solution using CCTV to solve multi-family housing parking problems (다세대주택 주차 문제 해소를 위한 CCTV를 활용한 인공지능(AI) 주차관제 솔루션)

  • Choi, Kyu-Min;Kim, Yu-Min;Shin, Jun-Pyo;Kim, Jung-Hyeon;Kwak, Min-Hyuk;Kim, Byung-Wan;Lee, Byong-Kwon
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.07a
    • /
    • pp.273-275
    • /
    • 2021
  • 본 논문에서는 기존 스마트주차관제 시스템의 한계로 인해 주차 관제의 사각지대에 있는 다세대 주택 주차 문제를 해결하는 솔루션을 제안한다. 기존 스마트 주차관제는 센서 기반의 고비용의 장비 및 시공비가 소요되며, 이러한 특성으로 인해 다세대 주택에 적용이 어렵다. 해당 문제를 해결하기 위해 본 논문은 기존 설비인 CCTV를 활용한 스마트 주차 관제 시스템을 제안하며, 해당 솔루션은 텐서플로 cnn중 알씨엔엔 RPN을 적용하여 차량 객체 인식 및 주차 공간 객체 인식을 구현하였으며, 다세대 주택 주변 CCTV 영상을 OpenCV를 활용하여 능동적이며 저비용의 스마트 주차 관제 방식을 구현하였으며 CCTV의 특성상 외곡되는 이미지를 OpenCV 이미지 변형을 통해 외곡 이미지를 복원하여 인식률을 높였다.

  • PDF

Escape Route Prediction and Tracking System using Artificial Intelligence (인공지능을 활용한 도주경로 예측 및 추적 시스템)

  • Yang, Bum-suk;Park, Dea-woo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.225-227
    • /
    • 2022
  • Now In Seoul, about 75,000 CCTVs are installed in 25 district offices. Each ward office in Seoul has built a control center for CCTV control and is building information such as people, vehicle types, license plate recognition and color classification into big data through 24-hour artificial intelligence intelligent image analysis. Seoul Metropolitan Government has signed MOUs with the Ministry of Land, Infrastructure and Transport, the National Police Agency, the Fire Service, the Ministry of Justice, and the military base to enable rapid response to emergency/emergency situations. In other words, we are building a smart city that is safe and can prevent disasters by providing CCTV images of each ward office. In this paper, the CCTV image is designed to extract the characteristics of the vehicle and personnel when an incident occurs through artificial intelligence, and based on this, predict the escape route and enable continuous tracking. It is designed so that the AI automatically selects and displays the CCTV image of the route. It is designed to expand the smart city integration platform by providing image information and extracted information to the adjacent ward office when the escape route of a person or vehicle related to an incident is expected to an area other than the relevant jurisdiction. This paper will contribute as basic data to the development of smart city integrated platform research.

  • PDF