우리의 제안시스템인 mobiAutoBot은 모바일 장치를 지원 가능한 인지 자동화 수준의 로보틱스 프로세스 자동화 소프트웨어의 개념모델이다. mobiAutoBot은 mobiAutoBot controller와 mobiAutoBot runner의 두 부분으로 구성되어 있다. mobiAutoBot controller는 모바일기기에 Job을 지시하고 모니터링 및 연동작업을 수행하며, 모바일기기에 설치된 mobiAutoBot runner는 명령내린 작업을 수행한다. 우리가 제안한 mobiAutoBot을 통하여 모바일기기에 대한 자동화 기능을 중소기업에 제공한다면, 고가의 정보기반 인프라가 없더라도 단순 스마트폰과 같은 모바일기기만으로 기존 정보시스템과 연계 가능한 로보틱스 프로세스 자동화 기능을 저비용으로 구축할 수 있다. 우리의 제안은 모든 정보시스템 인프라를 갖추기는 어려운 중소기업이나 개인 사용자에게도 로보틱스 프로세스 자동화를 확산하는 계기가 될 것으로 기대한다.
최근 각종 사업 분야에서 기업들은 기존 메신저 플랫폼에 인공지능을 더하여 다양한 환경을 대상으로 챗봇 서비스 지원에 주력하고 있다. 취업알선 분야의 기관에서도 취업상담 서비스 품질 제고와 상담 인력 해소를 위해 챗봇 서비스를 요구한다. 일반적인 텍스트 기반 챗봇은 입력된 사용자 문장을 학습된 문장으로 분류하여 적합한 답변을 사용자에게 제공한다. 최근 소셜 네트워크 서비스의 활성화 영향으로 챗봇에 입력되는 사용자 문장은 단문으로 입력되는 경향이 있다. 따라서 단문 분류의 성능향상은 챗봇 서비스의 성능향상에 기여할 수 있다. 본 연구는 취업알선 챗봇을 위한 단문 분류 강화를 위해 기존 연구의 개념 정보뿐만 아니라 번역문 정보를 활용하는 방법인 T-EBOW (Translation-Extended Bag Of Words)를 제안한다. T-EBOW를 기계학습 분류 모델에 적용한 단문 분류의 성능은 기존 방법에 비해 우수한 성능 평가 결과를 보였다.
본 논문에서는 검색엔진 최적화(SEO; Search Engine Optimization)에 인공지능 기법을 접목하여, 자동화된 SEO 도구 설계 및 구현을 목표로 한다. 기존의 SEO 온-페이지(On-page) 최적화 기법들은 웹페이지 관리자들의 경험적 지식에 의존하는 한계점을 보이고 있다. 이는 SEO 성능에 영향을 끼칠 뿐 아니라, 웹페이지 관리자들에게도 SEO 도입의 장벽으로 작용한다. 따라서, 위 문제를 해결하기 위하여 메타데이터의 효과적인 구성을 위해 다음과 같은 3단계의 접근법을 제안하고자 한다. i) 상위 랭킹 웹사이트들의 메타데이터를 추출한다. ii) 어텐션 메커니즘에 기반한 LSTM(Long Short Term Memory)을 이용하여 사용자 질의어와의 관련성 높은 메타데이터를 생성한다. iii) GAN(Generative Adversarial Network) 모델을 통하여 학습함으로써 전반적으로 성능을 높여주는 기법을 제안한다. 본 연구결과는 기업의 온라인 마케팅 프로세스를 평가하고 개선하기 위한 최적화 도구로서 유용하게 활용될 것으로 기대한다.
최근 정부에서 역점 적으로 추진하고 있는 '재생에너지 3020', '그린뉴딜', '2050 탄소중립', 'K-RE100' 정책에 의해 재생에너지 관련 발전설비들이 급증하고 있다. 재생에너지 설비들은 대부분 소규모이고, 분산되어 있어서 효율적인 관리가 어렵고, 1MW 미만의 소규모 분산자원은 판매량 제한, 거래회피 등으로 시장참여에 큰 어려움을 겪고 있다. 특히, 재생에너지의 간헐성 때문에 전력망의 안정성 저하에도 큰 영향을 끼치고 있다. 정부에서는 '소규모 분산자원 중개거래'를 통해서 변동성 및 간헐성 문제를 해결하고, 이종의 대량 소규모 분산자원들의 계통 자원화와 수용성 확대를 추구하고 있다. 본 연구에서는 AI에 기반한 발전량 예측 모델을 분산자원 중개거래 시스템에 적용하여 최적의 운영 솔루션을 제시하고, 에너지신사업 시장 개척의 기반 플랫폼으로 활용될 수 있도록 하고자 한다.
Oil and steel prices, which are major pricescosts in the shipbuilding industry, were predicted. Firstly, the error of the moving average line (N=3-5) was examined, and in all three error analyses, the moving average line (N=3) was small. Secondly, in the linear prediction of data through existing theory, oil prices rise slightly, and steel prices rise sharply, but in reality, linear prediction using existing data was not satisfactory. Thirdly, we identified the limitations of linear prediction methods and confirmed that oil and steel price prediction was somewhat similar to actual moving average line prediction methods. Due to the high volatility of major price flows, large errors were inevitable in the forecast section. Through the time series analysis method at the end of this paper, we were able to achieve not bad results in all analysis items relative to artificial intelligence (Prophet). Predictive data through predictive analysis using eight predictive models are expected to serve as a good research foundation for developing unique tools or establishing evaluation systems in the future. This study compares the basic settings of artificial intelligence programs with the results of core price prediction in the shipbuilding industry through time series prediction theory, and further studies the various hyper-parameters and event effects of Prophet in the future, leaving room for improvement of predictability.
부정맥 분류를 위한 기존 연구들은 분류의 정확성을 높이기 위해 신경회로망(Artificial Neural Network), 기계학습(Machine Learning) 등을 이용한 방법이 연구되어 왔다. 특히 딥러닝은 신경회로망의 문제인 은닉층 개수의 한계를 해결함으로 인해 인공 지능 기반의 부정맥 분류에 많이 사용되고 있다. 본 연구에서는 AR 기반의 특징점 추출과 딥러닝을 통한 부정맥 분류 방법을 제안한다. 이를 위해 먼저 잡음을 제거한 ECG 신호에서 R파를 검출하고 자기 회귀 모델을 통하여 최적의 QRS와 RR간격을 추출하였다. 이후 딥러닝을 통한 지도학습 방법으로 가중치를 학습시키고 부정맥을 분류하였다. 제안된 방법의 타당성 평가를 위해 MIT-BIH 부정맥 데이터베이스를 통해 각 파라미터에 따른 훈련 및 분류 정확도를 확인하였다. 성능 평가 결과 PVC는 약 97% 이상의 평균 분류율을 나타내었다.
본 논문은 단기 에너지 사용량 예측을 위해 인공지능 기반의 접근법에 대해 분석한다. 본 논문에서는 단기 에너지 사용량 예측 기술에 자주 활용되는 지도학습 알고리즘의 한계를 개선하기 위해 강화학습 알고리즘을 활용한다. 지도학습 알고리즘 기반의 접근법은 충분한 성능을 위해 에너지 사용량 데이터뿐만 아니라 contextual information이 필요하여 높은 복잡성을 가진다. 데이터와 학습모델의 복잡성을 개선하기 위해 다중 에이전트 기반의 심층 강화학습 알고리즘을 제안하여 에너지 사용량 데이터로만 에너지 사용량을 예측한다. 공개된 에너지 사용량 데이터를 통해 시뮬레이션을 진행하여 제안한 에너지 사용량 예측 기법의 성능을 확인한다. 제안한 기법은 이상점의 특징을 가지는 데이터를 제외하고 실제값과 유사한 값을 예측하는 것을 보여준다.
4차 산업혁명 '인공지능 시대'를 맞이하여 ICT 기술의 발전은 온·오프라인 교육환경에 다양한 영향을 미치고 있다. 온라인 교육의 대중화는 교육 패러다임을 변화시켜 학습자 중심의 서비스로 전환하여 새로운 교육 환경의 변화가 요구되는 시점에서 플립러닝에 대한 관심이 높아지고 있다. 특히 성인학습자의 경우 생애 전반에 걸쳐 보다 다양한 학습과정의 온라인 학습 수요가 강하게 대두되고 있다. 본 연구는 K사이버대학교의 중·장년층 온라인 학습자를 대상으로 플립러닝을 활용한 반복학습이 학습 몰입과 학습 흥미가 학습 만족도에 미치는 영향의 관계검증과 구조관계에 어떻게 되는지 규명하고자 하였다. 이를 통해 플립러닝을 근간으로 한 학습 만족도를 위한 방향성 제시를 위한 연구에 의의가 있다. 향후 연구에서는 측정할 수 있는 다양한 요인 분석의 모델을 구체화하여 적용한다면 플립러닝을 근간으로 한 학습만족도를 더욱 극대화할 수 있는 연구에 활용될 수 있을 것이다.
Ambient Air Vaporizer (AAV) is an essential facility in the process of generating natural gas that uses air in the atmosphere as a medium for heat exchange to vaporize liquid natural gas into gas-state gas. AAV is more economical and eco-friendly in that it uses less energy compared to the previously used Submerged vaporizer (SMV) and Open-rack vaporizer (ORV). However, AAV is not often applied to actual processes because it is heavily affected by external environments such as atmospheric temperature and humidity. With insufficient operational experience and facility operations that rely on the intuition of the operator, the actual operation of AAV is very inefficient. To address these challenges, this paper proposes an artificial intelligence-based model that can intelligent AAV operations based on operational big data. The proposed artificial intelligence model is used deep neural networks, and the superiority of the artificial intelligence model is verified through multiple regression analysis and comparison. In this paper, the proposed model simulates based on data collected from real-world processes and compared to existing data, showing a 48.8% decrease in power usage compared to previous data. The techniques proposed in this paper can be used to improve the energy efficiency of the current natural gas generation process, and can be applied to other processes in the future.
현재 4차 산업혁명 시대에 발맞춰서 선박 분야에서는 인공지능 요소를 접목하여 미래를 대비하여야 한다. 그리고 자율운항 선박 등장에 대한 전력관리 분야에서도 이에 대한 대응이 필요하다. 본 연구에서는 머신러닝의 DNN(Deep Neural Network)을 이용한 배터리 연동형 전력관리시스템(BLPMS, Battery Linked Power Management System) 알고리즘을 제안한다. 실험을 위하여 LabView를 통한 선박 데이터를 바탕으로 운항모드별 선박 전력소비량의 패턴을 학습하고 Python을 통해 배터리의 상태를 도출하여 발전기와 배터리의 연동의 유연성을 확인하였다. 실험의 결과 배터리의 충·방전을 통해 발전기의 저부하 운전이 감소되고, LNG의 1%의 연료소모량 감소를 통하여 경제성 및 신뢰성을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.