기계학습 알고리즘을 이용한 다양한 분야에서의 활용사례들이 우리 사회로 점차 확산되어가며, 기계학습을 통해 산출된 모델의 오동작을 유발할 수 있는 공격이 활발히 연구되고 있다. 특히, 한국에서는 딥러닝을 포함해 인공지능을 응용한 융합분야를 국가적 차원에서 추진하고 있으며, 만약 인공지능 모델 자체에서 발생하는 취약점을 보완하지 못하고 사전에 공격을 대비하지 않는다면, 뒤늦은 대응으로 인하여 관련 산업의 활성화가 지연될 수 있는 문제점이 발생할 수도 있다. 본 논문에서는 기계학습 모델에서, 특히 심층 신경망으로 구성되어 있는 모델에서 발생할 수 있는 공격들을 정의하고 연구 동향을 분석, 안전한 기계학습 모델 구성을 위해 필요한 시사점을 제시한다. 구체적으로, 가장 널리 알려진 적대적 사례(adversarial examples) 뿐 아니라, 프라이버시 침해를 유발하는 추론 공격 등이 어떻게 정의되는지 설명한다.
본 연구는 여러 가지 Data Mining 기법들로부터 도출된 지식과 AHP를 이용하여 도출된 전문가의 지식을 사용된 정보의 특성에 따라 조사하고, 이러한 각각의 지식들을 중심으로 부도예측 모형을 설계한 후, 각 모형의 특성 및 부도예측력에 대한 실증적 비교연구에 그 목적을 두고 있다. 사용된 Data Mining 기법들은 통계적 다중판별분석 모형, ID3 모형, 인공신경망 모형이며, 전문가 지식의 추출은 AHP를 사용하여 45명의 전문가로부터 부도와 관련하여 인터뷰 및 설문조사를 실시하였다. 특히 부도예측에 사용된 변수의 특성을 정량적 재무정보와 정성적 비재무정보로 나누어서 각 모형의 특성을 비교연구하였다. 연구결과 부도예측시 정성적정보의 중요성을 확인하였으며, 전문가의 지식을 기반으로한 AHP 모형이 위험예측모형으로 사용될 수 있음을 실증적으로 보여주었다.
Proceedings of the Korea Inteligent Information System Society Conference
/
2000.11a
/
pp.359-366
/
2000
기업의 환경에서 이-메일(e-mail)은 회사내의 업무흐름을 완전히 뒤바꾸며 혁명적인 변화를 이끌고 있다. 업무 공간의 극복, 사내 커뮤니케이션의 극대화 등 이-메일이 제공하는 장점이 매우 많다. 그러나 최근 사회적 문제가 되고 있는 스팸 메일(spam mail)의 등장은 이러한 장점의 커다란 반대급부를 제공한다. 스팸메일이란 인터넷이용자들에게 원하지도 않았는데 무작위로 발송되는 광고성 이-메일을 일컫는 말로, 벌크(bulk)메일, 정크(junk)메일, 언솔리시티드(Unsolicited)메일과도 유사한 의미로 사용된다. 스팸메일은 사용자들로 하여금 스트레쓰의 요인이 되게 함은 물론, 이를 발신하고 수신하는 과정에서 이용되는 서버에 엄청난 부하를 줄 뿐만 아니라, 공공의 성격을 지니는 네트웍 자원을 아무런 비용의 지불 없이 독점하게 되는 좋지 않은 결과를 가져오게 된다. 본 연구에서는 데이터마이닝의 기법 중 분류(classification tack) 문제에 적웅이 활발한 인공신경망 (artificial neural networks)과 의사결정나무(decision tree)기법을 이용하여 스팸메일의 분류와 예측을 가능케 하는 모형을 구축한다.
Intelligent agent is to decide what customers need on the internet and offer them accurate information. In this paper, the system which can recommend the tourism items in terms of customer‘s needs is proposed by appling the intelligent agent to railway tourism system. Most of previous agents are focused on price. But, this study proposes the Railway tourism system which offers each customer the best suitable information based on quality of information and reputation. The customer's needs are analyzed through intelligent agent and the information which is suitable for customer's needs is obtained the Artificial Neural Network Model.
Annual Conference on Human and Language Technology
/
2021.10a
/
pp.423-426
/
2021
본 논문은 전역 스타일 토큰(Global Style Token)을 기준으로 하여 감정의 세기를 조절할 수 있는 방법을 소개한다. 기존의 전역 스타일 토큰 연구에서는 원하는 스타일이 포함된 참조 오디오(reference audio)을 사용하여 음성을 합성하였다. 그러나, 참조 오디오의 스타일대로만 음성합성이 가능하기 때문에 세밀한 감정 조절에 어려움이 있었다. 이 문제를 해결하기 위해 본 논문에서는 전역 스타일 토큰의 레퍼런스 인코더 부분을 잔여 블록(residual block)과 컴퓨터 비전 분야에서 사용되는 AlexNet으로 대체하였다. AlexNet은 5개의 함성곱 신경망(convolutional neural networks) 으로 구성되어 있지만, 본 논문에서는 1개의 신경망을 제외한 4개의 레이어만 사용했다. 청취 평가(Mean Opinion Score)를 통해 제시된 방법으로 감정 세기의 조절 가능성을 보여준다.
Proceedings of the Korea Information Processing Society Conference
/
2023.11a
/
pp.774-775
/
2023
최근 인공지능 기술의 발달로 인하여 AI를 활용한 가정에서 이용할 수 있는 다양한 지능형 IoT 제품들이 시중에 출시되고 있다. 대표적으로 가정에서 사용하는 멀티탭 등 여러 가지 상품들이 있다. 본 논문에서는 전류 센서와 전압 센서값을 이용하여 가전제품을 예측하고 이를 시각화하여 전기 절약에 도움을 줄 수 있는 지능형 멀티탭을 제안한다.
Proceedings of the Korea Information Processing Society Conference
/
2021.11a
/
pp.887-890
/
2021
최근 AI 를 활용한 의료 진단 솔루션 시장이 크게 성장함에 따라 의료 인공지능 기술에 대한 대학 교육에 대한 수요가 증가하고 있지만, 개인정보 유출의 위험성 등으로 인하여 의료 데이터를 대학 교육에 활용하기 어려운 실정이다. 본 논문에서는 실제 의료 데이터 대신 생성적 적대 신경망(GAN)으로 합성된 흉부 X-ray 영상을 활용한 의료 인공지능 교육 모델의 사례를 제시한다. 프로메디우스(주)에 의해 제공받은 흉부 X-ray 합성영상을 사용하여, VGG-16 모델을 훈련하고 성능을 검증 및 평가하며 미세조정을 통해 성능을 개선하는 교육 모델을 구성하였다. 또한 교육모델이 의료 인공지능에 대한 학생들의 이해력 향상에 기여한 효과를 정량적으로 평가하였다.
The Journal of the Convergence on Culture Technology
/
v.8
no.5
/
pp.613-618
/
2022
Research on artificial intelligence based on SNN (Spiking Neural Networks) is drawing attention as a next-generation artificial intelligence that can overcome the limitations of artificial intelligence based on DNN (Deep Neural Networks) that is currently popular. In this paper, we describe the structure of the SNN compiler, a system SW that generate code from SNN description for neuromorphic computing systems. We also introduce the algorithms used for compiler implementation and present experimental results on how the execution time varies in neuromorphic computing systems depending on the the mapping algorithm. The mapping algorithm proposed in the text showed a performance improvement of up to 3.96 times over a random mapping. The results of this study will allow SNNs to be applied in various neuromorphic hardware.
Journal of Korea Society of Industrial Information Systems
/
v.23
no.6
/
pp.79-94
/
2018
The purpose of this study is to specify a probabilistic tracking mechanism for customer luxury purchase implemented by hidden Markov model, Bayesian inference, customer satisfaction and net promoter score. In this paper, we have designed a probabilistic model based on customer's actual data containing purchase or non-purchase states by tracking the SPC chain : customer satisfaction -> customer referral -> purchase/non-purchase. By applying hidden Markov model and Viterbi algorithm to marketing theory, we have developed the statistical model related to probability theories and have found the best purchase pattern scenario from customer's purchase records.
Journal of the Korea Academia-Industrial cooperation Society
/
v.22
no.6
/
pp.305-313
/
2021
The upcoming warfare will be network-centric warfare with the acquiring and sharing of information on the battlefield through the connection of the entire weapon system. Therefore, the amount of information generated increases, but the technology of evaluating the information is insufficient. Threat assessment is a technology that supports a quick decision, but the information has many uncertainties and is difficult to apply to an advanced battlefield. This paper proposes a threat assessment based on artificial intelligence while removing the target uncertainty. The artificial intelligence system used was a fuzzy inference system and a multi-layer perceptron. The target was classified by inputting the unique characteristics of the target into the fuzzy inference system, and the classified target information was input into the multi-layer perceptron to calculate the appropriate threat value. The validity of the proposed technique was verified with the threat value calculated by inputting the uncertain target to the trained artificial neural network.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.