• Title/Summary/Keyword: 인공위성 자세제어

Search Result 119, Processing Time 0.025 seconds

Dynamic Effects Analysis on a Solar Array Due to Attitude Control Thruster Plume (자세제어 추력기 배기가스에 의한 태양전지판의 동적 영향 분석)

  • Chae, Jongwon;Han, Cho Young;Jun, Hyoung Yoll
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.9
    • /
    • pp.799-804
    • /
    • 2015
  • The purpose of this study is to analyse the dynamic disturbances(disturbed forces and disturbed torques) due to attitude control thruster's plume impingement on the solar arrays. To produce database of the dynamic disturbances a sweep analysis was done, in which the two parameters are used; the distance between the thruster and solar arrays and the thruster tilt angle. Based on the database, a third order polynomial approximation is computed to represent the characteristics of the disturbed forces and torques. The final results are the coefficients of the approximation for each solar array angle position. These results as input data are used to optimize the configuration of the attitude control thrusters. This analysis is appled to the two candidate solar arrays for Geo-Kompsat-2 satellite and the results of the disturbed forces and disturbed torques are compared and analysed.

Structural Analysis of Satellite Propulsion System Module Bracket (인공위성 추진시스템 모듈 브라켓의 구조해석)

  • Lee, Gyun Ho;Kim, Jeong Su
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.2
    • /
    • pp.89-95
    • /
    • 2003
  • Propulsion system of the current developing satellite is roughly composed of propellant tank and four major modules. Each module prevides the pulse momentum for spacecraft attitude control, filling/draining of propellant and pressurant, propellant filtering, and the change of flow passage in the spacecraft emergency situation, respectively. These modules will be fixed on the propulsion platform with their suitable mounting brackers, so the brackets shall be designed sufficiently to support a function of the modules under launch environment and on-orbit condition. The purpose of this article is to check if all the bracket designs satisfy the defined structural requirements through finite element analysis, and then to verify structural safety.

DSMC Analysis of Low Thruster Nozzle (저추진력 추력기의 DSMC 해석)

  • 박재현;백승욱;김정수
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.3-3
    • /
    • 2000
  • 저추진력 추력기라는 것은 추력이 수 N 정도, 노즐출구직경이 수 mm 정도의 소형추력기를 의미하며, 주로 인공위성을 비롯한 우주 비행체의 자세제어, 궤도천이 등의 목적을 위해 사용된다. 따라서, 저추진력 추력기의 일반적인 작동환경은 연속체 영역, 천이영역(transition flow regime), 희박영역(rarefied flow regime)을 모두 포함하므로, 기존의 연속체 유체역학에서 사용되는 Navier-Stokes 방정식을 사용할 수 없고, 분자들의 미시적인 움직임과 내부 에너지 분포를 고려한 Boltzmann 방정식을 이용한 해석을 수행하여야 한다.(중략)

  • PDF

Detection and Identification of CMG Faults based on the Gyro Sensor Data (자이로 센서 정보 기반 CMG 고장 진단 및 식별)

  • Lee, Jung-Hyung;Lee, Hun-Jo;Lee, Jun-Yong;Oh, Hwa-Suk;Song, Tae-Seong;Kang, Jeong-min;Song, Deok-ki;Seo, Joong-bo
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.2
    • /
    • pp.26-33
    • /
    • 2019
  • Control moment gyro (CMG) employed as satellite actuators, generates a large torque through the steering of its gimbals. Although each gimbal holds a high-speed rotating wheel, the wheel imbalances induces disturbance and degrades the satellite control quality. Therefore, the disturbances ought to be detected and identified as a precaution against actuator faults. Among the method used in detecting disturbances is the state observers. In this paper, we apply a continuous second order sliding mode observer to detect single disturbances/faults in CMGs. Verification of the algorithm is also done on the hardware satellite simulator where four CMGs are installed.

Recent Trend of the Configuration Design of High Resolution Earth Observation Satellites (고해상도 지구관측위성 본체 형상설계 동향)

  • Lim, Jae-Hyuk;Kim, Kyung-Won;Kim, Sun-Won;Kim, Jin-Hee;Hwang, Do-Soon
    • Current Industrial and Technological Trends in Aerospace
    • /
    • v.8 no.1
    • /
    • pp.45-54
    • /
    • 2010
  • The goal of the paper is to discuss the recent trend of the configuration of high resolution LEO(Low Earth Orbit) EO(Earth Observation) satellites. The satellite configuration is decided by considering several factors such as mission, payloads, launch vehicle, propulsion and attitude control module. The advent of commercial companies selling satellite's images in 2000's requires additional changes of the satellite system to be capable of obtaining many high resolution images quickly. In order to meet customer's needs, the overall configuration of satellites is designed to be compact and stable without the loss of structural integrity and reliability. Among design changes, the configuration change of satellites is treated intensively in the paper.

  • PDF

Study of Micro Propulsion System Based on Thermal Transpiration (열적발산원리를 이용한 마이크로 추진장치에 대한 연구)

  • Jung, Sung-Chul;Shin, Kang-Chang;Kim, Youn-Ho;Kim, Hye-Hwan;Lee, Yong-Wu;Huh, Hwan-Il
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.04a
    • /
    • pp.25-29
    • /
    • 2007
  • Minimization of conventional propulsion device has been studied for altitude control of micro satellite. We studied micro nozzle performance and found higher significant loss for a micro nozzle with smaller nozzle throat diameter. To overcome this loss, we proposed thermal transpiration based micro propulsion system. This new system has no moving parts and can control flow by temperature gradient, and this can be an option for potential new micro propulsion system.

  • PDF

3-Axis Modeling and Small Angle Maneuver Including Vibration Suppression for a Satellite (인공위성의 3축 모델링과 진동억제를 포함한 소각선회)

  • Lee, D.W.;Cho, K.R.
    • Journal of Advanced Navigation Technology
    • /
    • v.4 no.2
    • /
    • pp.103-113
    • /
    • 2000
  • There are several methods in the mathematical modeling of a satellite with flexible appendages. In this paper, the hybrid Lagrange's equations of motion using assumed modes method are derived. The assumed modes method is one of approximate methods which have shorter calculation time due to low-dimension compare with FEM. These consist of three-equations about angular velocities and two-equations about flexible deformations, and physically represent interaction between hub and solar panel. In an attitude control, a control law is designed to minimize a given performance index considering not only control input but also vibration suppression. For these purpose, this paper applies LQG and LQG/LTR schemes to this model and finally show the capability for attitude control including vibration suppression. Especially, this paper shows the method of assumption as nonsingular system through singular value division for LQG/LTR design.

  • PDF

SATELLITE'S LAUNCH WINDOW CALCULATION BY ASTRODYNAMICAL METHODS (천체역학적 방법을 이용한 인공위성의 최적발시간대)

  • 우병삼;최규홍
    • Journal of Astronomy and Space Sciences
    • /
    • v.11 no.2
    • /
    • pp.308-319
    • /
    • 1994
  • We can launch satellites only at a certain time which satisfies special conditions, since the current techniques cannot overcome these constraints. Launch window constraints are the eclipse duration, solar aspect angle, attitude control, launch site and the launch vehicle constraints, etc. In this paper, launch window is calculated that satisfies all these constraints. In calculating launch window, the basic concepts are relative locations of the sun-satellite-earth system and relative velocities of these, and these requires geometric consideration for each satellite. Launch window calculation was applied to Kitsat 2(low earth orbit) and Koreasat(geostationary orbit). The result is shown in the form of a graph that has dates on the X-axis and the corresponding times of the given day on the Y-axis.

  • PDF