• Title/Summary/Keyword: 인공신경 망

Search Result 2,069, Processing Time 0.031 seconds

A study on Development of Artificial Neural Network (ANN) for Preliminary Design of Urban Deep Ex cavation and Tunnelling (도심지 지하굴착 및 터널시공 예비설계를 위한 인공신경망 개발에 관한 연구)

  • Yoo, Chungsik;Yang, Jaewon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.19 no.1
    • /
    • pp.11-23
    • /
    • 2020
  • In this paper development artificial neural networks (ANN) for preliminary design and prediction of urban tunnelling and deep excavation-induced ground settlement was presented. In order to form training and validation data sets for the ANN development, field design and measured data were collected for various tunnelling and deep-excavation sites. The field data were then used as a database for the ANN training. The developed ANN was validated against a testing set and the unused field data in terms of statistical parameters such as R2, RMSE, and MAE. The practical use of ANN was demonstrated by applying the developed ANN to hypothetical conditions. It was shown that the developed ANN can be effectively used as a tool for preliminary excavation design and ground settlement prediction for urban excavation problems.

A Study on the prosody generation of artificial neural networks (인공신경망의 운률 발생에 관한 연구)

  • 신동엽;민경중;강찬구;임운천
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • spring
    • /
    • pp.87-90
    • /
    • 2000
  • 문-음성 합성기의 자연감을 높이기 위해 주로 자연음에 존재하는 운률 법칙을 정확히 구현해 주어야 한다. 일반적으로 언어학적 정보를 이용하거나 자연음으로부터 추출한 운률 정보를 추출한 운률 법칙을 합성에 이용하고 있다. 이와 같이 구한 운률 법칙이 자연음에 존재하는 모든 운률 법칙을 포함할 수 있으면, 자연스러운 합성음을 들을 수 있겠으나, 실질적으로는 모든 법칙을 구현한다는 것은 어려운 실정이고, 자연음으로부터 추출한 운률 법칙이 잘못 구현되는 경우 합성음의 자연성이 떨어지는 것을 피할 수 없을 것이다. 이런 점을 고려하여 우리는 자연음에 내재하는 운율 법칙을 훈련을 통해 학습할 수 있는 인공 신경망을 제안하였다 운률의 세 가지 요소는 피치, 지속시간, 크기 변화가 있는데, 인공 신경망은 문장이 입력되면, 각 해당 음소의 지속시간에 따른 피치 변화와 크기 변화를 학습할 수 있도록 설계하였다. 신경망을 훈련시키기 위해 고립 단어군과 음소균형 문장군을 화자로 하여금 발성하게 하여, 녹음하고, 분석하여 운률 데이터베이스를 구축하였다. 자연음의 각 음소에 대해 지속시간과 피치변화 그리고 크기 변화를 구하여 곡선 적응 방법을 이용하여 각 변화 곡선에 대한 계수를 구해 데이터베이스를 구축한다. 이렇게 구축한 데이터베이스를 이용해 인공 신경망을 훈련시켜 평가한 결과 훈련용 데이터를 계속 확장하면 좀 더 자연스러운 운률을 발생시킬 수 있음을 관찰하였다.

  • PDF

Defect Diagnostics of Gas Turbine Engine Using Support Vector Machine and Artificial Neural Network (Support Vector Machine과 인공신경망을 이용한 가스터빈 엔진의 결함 진단에 관한 연구)

  • Park Jun-Cheol;Roh Tae-Seong;Choi Dong-Whan;Lee Chang-Ho
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.10 no.2
    • /
    • pp.102-109
    • /
    • 2006
  • In this Paper, Support Vector Machine(SVM) and Artificial Neural Network(ANN) are used for developing the defect diagnostic algorithm of the aircraft turbo-shaft engine. The system that uses the ANN falls in a local minima when it learns many nonlinear data, and its classification accuracy ratio becomes low. To make up for this risk, the Separate Learning Algorithm(SLA) of ANN has been proposed by using SVM. This is the method that ANN learns selectively after discriminating the defect position by SVM, then more improved performance estimation can be obtained than using ANN only. The proposed SLA can make the higher classification accuracy by decreasing the nonlinearity of the massive data during the training procedure.

A Hybrid System of Wavelet Transformations and Neural Networks Using Genetic Algorithms: Applying to Chaotic Financial Markets (유전자 알고리즘을 이용한 웨이블릿분석 및 인공신경망기법의 통합모형구축)

  • Shin, Taek-Soo;Han, In-Goo
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 1999.03a
    • /
    • pp.271-280
    • /
    • 1999
  • 인공신경망을 시계열예측에 적용하는 경우에 고려되어야 할 문제중, 특히 모형에 적합한 입력변수의 생성이 중요시되고 있는데, 이러한 분야는 인공신경망의 모형생성과정에서 입력변수에 대한 전처리기법으로써 다양하게 제시되어 왔다. 가장 최근의 입력변수 전처리기법으로써 제시되고 있는 신호처리기법은 전통적 주기분할처리방법인 푸리에변환기법(Fourier transforms)을 비롯하여 이를 확장시킨 개념인 웨이블릿변환기법(wavelet transforms) 등으로 대별될 수 있다. 이는 기본적으로 시계열이 다수의 주기(cycle)들로 구성된 상이한 시계열들의 집합이라는 가정에서 출발하고 있다. 전통적으로 이러한 시계열은 전기 또는 전자공학에서 주파수영역분할, 즉 고주파 및 저주파수를 분할하기 위한 기법에 적용되어 왔다. 그러나, 최근에는 이러한 연구가 다양한 분야에 활발하게 응용되기 시작하였으며, 그 중의 대표적인 예가 바로 경영분야의 재무시계열에 대한 분석이다. 전통적으로 재무시계열은 장, 단기의사결정을 가진 시장참여자들간의 거래특성이 시계열에 각기 달리 가격으로 반영되기 때문에 이러한 상이한 집단들의 고요한 거래움직임으로 말미암아 예를 들어, 주식시장이 프랙탈구조를 가지고 있다고 보기도 한다. 이처럼 재무시계열은 다양한 사회현상의 집합체라고 볼 수 있으며, 그만큼 예측모형을 구축하는데 어려움이 따른다. 본 연구는 이러한 시계열의 주기적 특성에 기반을 둔 신호처리분석으로서 기존의 시계열로부터 노이즈를 줄여 주면서 보다 의미있는 정보로 변환시켜줄 수 있는 웨이블릿분석 방법론을 새로운 필터링기법으로 사용하여 현재 많은 연구가 진행되고 있는 인공신경망의 모형결합을 통해 기존연구과는 다른 새로운 통합예측방법론을 제시하고자 한다. 본 연구에서는 제시하는 통합방법론은 크게 2단계 과정을 거쳐 예측모형으로 완성이 된다. 즉, 1차 모형단계에서 원시 재무시계열은 먼저 웨이브릿분석을 통해서 노이즈가 필터링 되는 동시에, 과거 재무시계열의 프랙탈 구조, 즉 비선형적인 움직임을 보다 잘 반영시켜 주는 다차원 주기요소를 가지는 시계열로 분해, 생성되며, 이렇게 주기에 따라 장단기로 분할된 시계열들은 2차 모형단계에서 신경망의 새로운 입력변수로서 사용되어 최종적인 인공 신경망모델을 구축하는 데 반영된다. 기존의 주기분할방법론은 모형개발자입장에서 여러 가지 통계기준치중에서 최적의 기준치를 합리적으로 선택해야 하는 문제가 추가적으로 발생하며, 본 연구에서는 이상의 제반 문제들을 개선시키기 위해 통합방법론으로서 기존의 인공신경망모형을 구조적으로 확장시켰다. 이 모형에서 기존의 입력층 이전단계에 새로운 층이 정의된다. 이렇게 해서 생성된 새로운 통합모형은 기존모형에서 생성되는 기본적인 학습파라미터와 더불어, 본 연구에서 새롭게 제시된 주기분할층의 파라미터들이 모형의 학습성과를 높이기 위해 함께 고려된다. 한편, 이러한 학습과정에서 추가적으로 고려해야 할 파라미터 갯수가 증가함에 따라서, 본 모델의 학습성과가 local minimum에 빠지는 문제점이 발생될 수 있다. 즉, 웨이블릿분석과 인공신경망모형을 모두 전역적으로 최적화시켜야 하는 문제가 발생한다. 본 연구에서는 이 문제를 해결하기 위해서, 최근 local minimum의 가능성을 최소화하여 전역적인 학습성과를 높여 주는 인공지능기법으로서 유전자알고리즘기법을 본 연구이 통합모델에 반영하였다. 이에 대한 실증사례 분석결과는 일일 환율예측문제를 적용하였을 경우, 기존의 방법론보다 더 나운 예측성과를 타나내었다.

  • PDF

Data Mining using Instance Selection in Artificial Neural Networks for Bankruptcy Prediction (기업부도예측을 위한 인공신경망 모형에서의 사례선택기법에 의한 데이터 마이닝)

  • Kim, Kyoung-jae
    • Journal of Intelligence and Information Systems
    • /
    • v.10 no.1
    • /
    • pp.109-123
    • /
    • 2004
  • Corporate financial distress and bankruptcy prediction is one of the major application areas of artificial neural networks (ANNs) in finance and management. ANNs have showed high prediction performance in this area, but sometimes are confronted with inconsistent and unpredictable performance for noisy data. In addition, it may not be possible to train ANN or the training task cannot be effectively carried out without data reduction when the amount of data is so large because training the large data set needs much processing time and additional costs of collecting data. Instance selection is one of popular methods for dimensionality reduction and is directly related to data reduction. Although some researchers have addressed the need for instance selection in instance-based learning algorithms, there is little research on instance selection for ANN. This study proposes a genetic algorithm (GA) approach to instance selection in ANN for bankruptcy prediction. In this study, we use ANN supported by the GA to optimize the connection weights between layers and select relevant instances. It is expected that the globally evolved weights mitigate the well-known limitations of gradient descent algorithm of backpropagation algorithm. In addition, genetically selected instances will shorten the learning time and enhance prediction performance. This study will compare the proposed model with other major data mining techniques. Experimental results show that the GA approach is a promising method for instance selection in ANN.

  • PDF

Prediction of Shear Strength Using Artificial Neural Networks for Reinforced Concrete Members without Shear Reinforcement (인공신경망을 이용한 전단보강근이 없는 철근콘크리트 보의 전단강도에 대한 예측)

  • Jung, Sung-Moon;Han, Sang-Eul;Kim, Kang-Su
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.18 no.2
    • /
    • pp.201-211
    • /
    • 2005
  • Due to the complex mechanism and various parameters that affect shear behavior of reinforced concrete (RC) members, models on shear tend to be complex and difficult to utilize for design of structural members, and empirical relationships formulated with limited test data often work lot members having a specific range of influencing parameters on shear. As an alternative approach tot solving this problem, artificial neural networks have been suggested by some researchers. In this paper, artificial neural networks were used to predict shear strengths of RC beams without shear reinforcement. Especially, a large database that consists of shear test results of 398 RC members without shear reinforcement was used for artificial neural network analysis. Three well known approaches for shear strength of RC members, ACI 318-02 shear provision, Zsutiy's equation, and Okamura's relationship, are also evaluated with test results in the shear database and compared with neural network approach. While ACI 318-02 provided inaccurate predictions for RC members without shear reinforcement, the empirical equations by Zsutty and Okamura provided more improved prediction of Shear strength than ACI 318-02. The artificial neural networks, however provided the best prediction of shear strengths of RC beams without shear reinforcement that was closest to test results.

Development of Neural Network Model for Estimation of Undrained Shear Strength of Korean Soft Soil Based on UU Triaxial Test and Piezocone Test Results (비압밀-비배수(UU) 삼축실험과 피에조콘 실험결과를 이용한 국내 연약지반의 비배수전단강도 추정 인공신경망 모델 개발)

  • Kim Young-Sang
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.8
    • /
    • pp.73-84
    • /
    • 2005
  • A three layered neural network model was developed using back propagation algorithm to estimate the UU undrained shear strength of Korean soft soil based on the database of actual undrained shear strengths and piezocone measurements compiled from 8 sites over the Korea. The developed model was validated by comparing model predictions with measured values about new piezocone data, which were not previously employed during development of model. Performance of the neural network model was also compared with conventional empirical methods. It was found that the number of neuron in hidden layer is different for the different combination of transfer functions of neural network models. However, all piezocone neural network models are successful in inferring a complex relationship between piezocone measurements and the undrained shear strength of Korean soft soils, which give relatively high coefficients of determination ranging from 0.69 to 0.72. Since neural network model has been generalized by self-learning from database of piezocone measurements and undrained shear strength over the various sites, the developed neural network models give more precise and generally reliable undrained shear strengths than empirical approaches which still need site specific calibration.

Hyperparameter Optimization and Data Augmentation of Artificial Neural Networks for Prediction of Ammonia Emission Amount from Field-applied Manure (토양에 살포된 축산 분뇨로부터 암모니아 방출량 예측을 위한 인공신경망의 초매개변수 최적화와 데이터 증식)

  • Pyeong-Gon Jung;Young-Il Lim
    • Korean Chemical Engineering Research
    • /
    • v.61 no.1
    • /
    • pp.123-141
    • /
    • 2023
  • A sufficient amount of data with quality is needed for training artificial neural networks (ANNs). However, developing ANN models with a small amount of data often appears in engineering fields. This paper presented an ANN model to improve prediction performance of the ammonia emission amount with 83 data. The ammonia emission rate included eleven inputs and two outputs (maximum ammonia loss, Nmax and time to reach half of Nmax, Km). Categorical input variables were transformed into multi-dimensional equal-distance variables, and 13 data were added into 66 training data using a generative adversarial network. Hyperparameters (number of layers, number of neurons, and activation function) of ANN were optimized using Gaussian process. Using 17 test data, the previous ANN model (Lim et al., 2007) showed the mean absolute error (MAE) of Km and Nmax to 0.0668 and 0.1860, respectively. The present ANN outperformed the previous model, reducing MAE by 38% and 56%.

Artificial neural network for classifying with epilepsy MEG data (뇌전증 환자의 MEG 데이터에 대한 분류를 위한 인공신경망 적용 연구)

  • Yujin Han;Junsik Kim;Jaehee Kim
    • The Korean Journal of Applied Statistics
    • /
    • v.37 no.2
    • /
    • pp.139-155
    • /
    • 2024
  • This study performed a multi-classification task to classify mesial temporal lobe epilepsy with left hippocampal sclerosis patients (left mTLE), mesial temporal lobe epilepsy with right hippocampal sclerosis (right mTLE), and healthy controls (HC) using magnetoencephalography (MEG) data. We applied various artificial neural networks and compared the results. As a result of modeling with convolutional neural networks (CNN), recurrent neural networks (RNN), and graph neural networks (GNN), the average k-fold accuracy was excellent in the order of CNN-based model, GNN-based model, and RNN-based model. The wall time was excellent in the order of RNN-based model, GNN-based model, and CNN-based model. The graph neural network, which shows good figures in accuracy, performance, and time, and has excellent scalability of network data, is the most suitable model for brain research in the future.

The assessment of performances of regional frequency models using Monte Carlo simulation: Index flood method and artificial neural network model (몬테카를로 시뮬레이션을 이용한 지역빈도해석 기법의 성능 분석: 홍수지수법과 인공신경망 모델)

  • Lee, Joohyung;Seo, Miru;Park, Jaeheyon;Heo, Jun-Haeng
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.156-156
    • /
    • 2021
  • 본 연구는 지역빈도해석을 기반으로한 인공신경망 모델과 기존에 널리 사용되는 방법인 홍수지수법의 성능을 몬테카를로 시뮬레이션을 이용하여 평가하였다. 컴퓨터 기술이 발달함에 따라 인공지능에 대한 접근성이 좋아지며 수문학을 포함한 다양한 분야에 적용되고 있다. 인공지능을 이용하여 강수량 및 유량 등 다양한 수문자료에 대한 예측이 이루어지고 있으나 빈도해석에 관한 연구는 비교적 적다. 본 연구에서 사용된 인공 지능 모델은 대상 지점의 지형학적 자료와 수문학적 자료를 이용하여 인공신경망을 통해 지점의 확률강우량(QRT-ANN) 및 확률분포형의 매개변수 (PRT-ANN)를 추정한다. 지형학적 자료로는 위도, 경도 그리고 고도가 사용되었으며 수문학적 자료로는 대상 지점의 최근 30년 일일연최대강우량을 사용하였다. 지역빈도해석의 정확도는 지역 내 통계적 특성이 비슷한 지점들이 포함되면 될수록 높아진다. 통계적 특성으로는 불일치 척도, 이질성 척도, 적합성 척도가 있으며 다양한 조건의 통계적 특성에 따른 세 개의 지역빈도해석 방법의 성능을 평가하고자 하였다. 대상 지역 내 n개의 지점이 있다고 가정하였을 때, 홍수지수법의 경우 n-1개의 지점으로 추정한 지역 성장곡선을 이용하여 나머지 1개 지점의 확률강우량을 산정할 수 있으며 인공신경망 모델들 또한 n-1개 지점들의 자료를 이용하여 모델을 구축한 뒤 나머지 지점의 확률강우량 및 확률분포형의 매개변수를 예측할 수 있다. PRT-ANN의 경우 예측된 매개변수를 이용하여 확률강우량을 산정하며 시뮬레이션 시행마다 발생시킨 자료의 지점빈도해석 결과에 대한 나머지 세 방법의 평균 제곱근 상대오차 (Relative root mean square error, RRMSE)를 계산하였다. 몬테카를로 시뮬레이션을 이용한 성능 분석을 통하여 관측값의 다양한 통계적 특성에 맞는 지역빈도해석 방법을 제시할 수 있을 것으로 판단된다.

  • PDF