• Title/Summary/Keyword: 인공신경 망

Search Result 2,069, Processing Time 0.034 seconds

Application of Artificial Neural Networks Technique for the Improvement of Flood Forecasting and Warning System (홍수 예.경보시스템 개선을 위한 인공신경망 이론의 적용)

  • Park, Sung-Chun;Kim, Yong-Gu;Jeong, Choen-Lee;Jin, Young-Hoon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.1265-1271
    • /
    • 2009
  • 본 연구에서는 강우의 시 공간적 분포의 불규칙한 변동성을 고려한 강우-유출예측모형을 위해 인공신경망(Artificial Neural Networks: ANNs)의 기법의 일종인 자기조직화(Self Organizing Map: SOM) 이론과 역전파 학습 알고리즘(Back Propagation Algorithm: BPA) 이론을 복합적으로 이용하였다. 기존의 인공신경망 연구에서 야기된 저 갈수기의 유출량에 대한 과대평가, 홍수기의 유출량에 대한 과소평가, 예측값이 연속적으로 선행 유출량을 나타내는 Persistence 현상을 해결하기 위하여 패턴분류 성능을 지닌 SOM 이론을 예측모형의 전처리 과정으로 이용하였다. 먼저, 본 연구에서 제안한 방법은 SOM에 의해 강우-유출 관계를 분류하고, SOM에 의한 분류에 따라 각각의 모형을 구성한다. 개별적으로 구축된 모형은 유출량의 예측을 위해 각각의 양상에 따라 분류된 자료를 이용한다. 결과적으로 본 연구에서 제안한 방법은 과거의 인공신경망의 일반적인 적용에 의한 결과보다 더 나은 예측능력을 보여주었으며, 더불어 유출량의 과소 및 과대추정과 Persistence 현상과 같은 문제점이 나타나지 않았다. 또한 강우량 및 유출량의 범위에 제한을 받지 않는 강우-유출예측 모형의 개발 및 홍수기로부터 갈수기까지의 보다 넓은 범위의 유출량의 예측에 기여할 것으로 기대된다.

  • PDF

Comparison of Artificial Neural Networks and LARS-WG for Downscaling Climate Change Scenarios (기후변화 시나리오의 상세화를 위한 인공신경망과 LARS-WG의 모의 기법 평가)

  • Kim, Ji-Hye;Kang, Moon-Seong;Song, In-Hong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.124-124
    • /
    • 2012
  • 기후변화가 수자원에 미치는 영향을 예측하는 데에 널리 사용되는 GCMs (General Circulation Models)는 모의 결과의 시 공간적 해상도가 낮기 때문에 상세화 (Downscaling) 기법을 거쳐 수문 모형에 적용된다. 상세화 기법은 크게 역학적 상세화 (Dynamical downscaling)와 통계적 상세화 (Statistical downscaling)로 구분되며, 종류가 매우 다양하고 각각의 모의 능력에 차이가 있으므로 적절한 기법을 선택할 필요가 있다. 본 연구의 목적은 통계적 상세화 기법 중 인공신경망과 LARS-WG 모형을 활용하여 CGCM3.1 T63의 모의 결과를 상세화하고, 두 모형의 모의 결과를 비교하는 데에 있다. 인공신경망은 비선형함수에 의한 전이함수 모형인 반면 LARS-WG는 추계학적 기상 발생기 모형으로, 각 모형을 이용해 CGCM3.1 T63의 강수량 및 평균기온 모의 결과를 서울 지역에 대해 공간적으로 상세화하였다. 모형의 검 보정은 1971년부터 2000년까지 30년 동안의 서울 관측소 일 기상 자료와 CGCM3.1 T63 (20C3M 시나리오) 모의 결과를 이용하여 수행하였다. 각 기법의 비교 및 평가는 2001년부터 2011년까지 11년 동안의 일 기상 자료와 CGCM3.1 T63 (IPCC SRES A1B 시나리오) 모의 결과를 이용하였다. 분석 결과, 인공신경망 모형은 입력 자료의 형태에 따라 모의 결과가 크게 달라지는 특성을 보였으며, LARS-WG 모형은 강수량을 실제보다 과소 추정하는 경향을 보였다. 본 연구에서는 강수량과 평균기온만을 대상으로 하였으나, 추후에 다른 기상인자를 고려함으로써 모형의 적용성을 보다 종합적으로 판단할 수 있을 것이다.

  • PDF

Forecasting on Areal Precipitation Estimation using Satellite Data (인공위성 자료를 이용한 유역의 면적평균강우량 예측)

  • Han, Kun-Yeun;Kim, Gwang-Seob;Choi, Hyuk-Joon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.904-907
    • /
    • 2005
  • 본 연구에서는 강우량의 실측치인 자동기상관측소(AWS) 자료와 현재의 대기상태인 인공위성(GMS-5호) 자료를 입력자료로 하여 현재부터 3시간 선행시간까지의 면적평균강우량을 예측할 수 있도록 강우예측 신경망 모형을 개발하였으며, 2002년 8월 집중호우시 남강댐 유역에 적용하였다. 신경망 모형의 학습을 위해서 $1998\~2001$$6\~9$월과 2002년 6, 7월의 강우사상과 적외선 자료가 사용되었고, 학습이 종료되면 예측기간(2002년 8월 $6\~16$일)동안의 강우예측이 수행되었다. 신경망 모형의 학습단계에서는 자료들간의 비선형 상관관계를 나타내는데 적합한 역전파 알고리즘 학습방법 중 모멘텀법을 사용하였으며, 신경망 모형의 출력값은 현재부터 3시간 후까지의 면적평균강우량을 예측할 수 있도록 구성하였다. 예측된 면적평균강우량은 실제 관측된 강우량의 패턴은 잘 따르고 있었지만 첨두치를 과소평가하는 경향이 나타났다. 본 연구에서 개발된 신경망 모형은 관측된 강우자료의 품질과 패턴이 모형의 정확성에 미치는 영향이 절대적인 기존의 신경망 모형과 차별화하여, 현재의 대기상태를 나타내는 인공위성 자료를 추가함으로써 보다 정확한 강우량 예측이 가능하도록 하였다.

  • PDF

Training Session Parallel ANN Simulator using Mobile Agent (이동 에이전트에 의한 학습세션 병렬 인공신경망 시뮬레이터)

  • 강태원;조용만;김미숙
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.10a
    • /
    • pp.13-15
    • /
    • 2003
  • 이 연구는 이동 에이전트 시스템에 기반한 가상의 병렬분산 컴퓨팅 환경에서 병렬로 수행되는 인공신경망 시뮬레이터를 구현하는 것을 목적으로 하며, 학습세션 수준에서 병렬로 학습하는 병렬 인공신경망 시뮬레이터의 성능을 대표적인 벤치마크 문제인 NetTalk을 대상으로 평가한 결과, 개발한 시뮬레이터가 상당히 효과적임을 알 수 있다.

  • PDF

Performance Comparison of DropOut and DropConnect in CNN (CNN에서의 DropOut과 DropConnect에 대한 성능 비교)

  • Jang, Yun-Seok;Lim, Hyun-il
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2019.05a
    • /
    • pp.464-466
    • /
    • 2019
  • CNN 은 합성곱 연산을 사용하는 인공신경망의 한 종류이다. 이러한 인공 신경망에서는 훈련 데이터에 대한 과도한 학습으로 인해 시험 데이터에 제대로 반응하지 못하는 오버피팅이 발생할 우려가 있다. 이를 해결하기 위해 DropOut 과 DropConnect 를 사용할 수 있다. 본 논문에서는 DropOut 과 DropConnect 를 통한 학습 정도를 실험을 통해서 비교해보고, 인공 신경망에서 이 방법의 효과를 살펴본다.

MPEG Compression of Neural Network (NNC) 국제표준 기술 동향

  • 문현철;정진우;김성제
    • Broadcasting and Media Magazine
    • /
    • v.28 no.1
    • /
    • pp.61-80
    • /
    • 2023
  • 인공신경망 모델이 다양한 분야에서 뛰어난 성능을 보이고 있지만, 동시에 모델의 복잡도도 크게 증가하였다. 따라서, 모바일 같은 저전력 디바이스에 인공신경망 모델이 실시간으로 추론/배포되기 위해서는 모델의 가중치 파라미터의 수 혹은 메모리 소모량을 줄이는 경량화 기술이 필수적이다. 이에 MPEG에서는 인공신경망 모델을 다양한 프레임워크에서 상호 운용 가능하고 파라미터를 압축 표현하는 NNC (Compression of Neural Networks) 표준화를 진행 중에 있다. 본고에서는 NNC 표준의 개요와 가중치 파라미터를 압축하는 압축 기술, 그리고 HLS (High-Level Syntax)들을 소개하고자 한다.

  • PDF

A Comparative Analysis of Artificial Intelligence System and Ohlson model for IPO firm's Stock Price Evaluation (신규상장기업의 주가예측에 대한 연구)

  • Kim, Kwang-Yong;Lee, Gyeong-Rak;Lee, Seong-Weon
    • Journal of Digital Convergence
    • /
    • v.11 no.5
    • /
    • pp.145-158
    • /
    • 2013
  • I estimate stock prices of listed companies using financial information and Ohlson model, which is used for the evaluation of company value. Furthermore, I use the artificial neural network, one of artificial intelligence systems, which are not based on linear relationship between variables, to estimate stock prices of listed companies. By reapplying this in estimating stock prices of newly listed companies, I evaluate the appropriateness in stock valuation with such methods. The result of practical analysis of this study is as follows. On the top of that, the multiplier for the actual stock price is accounted by generating the estimated stock prices based on the artificial neural network model. As a result of the comparison of two multipliers, the estimated stock prices by the artificial neural network model does not show statistically difference with the actual stock prices. Given that, the estimated stock price with artificial neural network is close to the actual stock prices rather than the estimated stock prices with Ohlson model.

Neural Predictive Coding for Text Compression Using GPGPU (GPGPU를 활용한 인공신경망 예측기반 텍스트 압축기법)

  • Kim, Jaeju;Han, Hwansoo
    • KIISE Transactions on Computing Practices
    • /
    • v.22 no.3
    • /
    • pp.127-132
    • /
    • 2016
  • Several methods have been proposed to apply artificial neural networks to text compression in the past. However, the networks and targets are both limited to the small size due to hardware capability in the past. Modern GPUs have much better calculation capability than CPUs in an order of magnitude now, even though CPUs have become faster. It becomes possible now to train greater and complex neural networks in a shorter time. This paper proposed a method to transform the distribution of original data with a probabilistic neural predictor. Experiments were performed on a feedforward neural network and a recurrent neural network with gated-recurrent units. The recurrent neural network model outperformed feedforward network in compression rate and prediction accuracy.

Damage Assessment of Plate Gider Railway Bridge Based on the Probabilistic Neural Network (확률신경망을 이용한 철도 판형교의 손상평가)

  • 조효남;이성칠;강경구;오달수
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.16 no.3
    • /
    • pp.229-236
    • /
    • 2003
  • Artificial neural network has been used for damage assessment by many researchers, but there are still some barriers that must be overcome to improve its accuracy and efficiency. The major problems associated with the conventional artificial neural network, especially the Back Propagation Neural Network(BPNN), are on the need of many training patterns and on the ambiguous relationship between neural network architecture and the convergence of solution. Therefore, the number of hidden layers and nodes in one hidden layer would be determined by trial and error. Also, it takes a lot of time to prepare many training patterns and to determine the optimum architecture of neural network. To overcome these drawbacks, the PNN can be used as a pattern classifier. In this paper, the PNN is used numerically to detect damage in a plate girder railway bridge. Also, the comparison between mode shapes and natural frequencies of the structure is investigated to select the appropriate training pattern for the damage detection in the railway bridge.

A Monitoring System Based on an Artificial Neural Network for Real-Time Diagnosis on Operating Status of Piping System (가스배관망 작동상태 실시간 진단용 인공신경망 기반 모니터링 시스템)

  • Jeon, Min Gyu;Cho, Gyong Rae;Lee, Kang Ki;Doh, Deog Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.2
    • /
    • pp.199-206
    • /
    • 2015
  • In this study, a new diagnosis method which can predict the working states of a pipe or its element in realtime is proposed by using an artificial neural network. The displacement data of an inspection element of a piping system are obtained by the use of PIV (particle image velocimetry), and are used for teaching a neural network. The measurement system consists of a camera, a light source and a host computer in which the artificial neural network is installed. In order to validate the constructed monitoring system, performance test was attempted for two kinds of mobile phone of which vibration modes are known. Three values of acceleration (minimum, maximum, mean) were tested for teaching the neural network. It was verified that mean values were appropriate to be used for monitoring data. The constructed diagnosis system could monitor the operation condition of a gas pipe.