• Title/Summary/Keyword: 인공신경망 회로

Search Result 158, Processing Time 0.027 seconds

Extreme Learning Machine based Fuzzy Pattern Classifier for Face Recognition (얼굴인식을 위한 ELM 기반 퍼지 패턴분류기)

  • Oh, Sung-Kwun;Roh, Seok-Beom
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.1369-1370
    • /
    • 2015
  • 본 논문에서는 얼굴 인식을 위하여 인공 신경망의 일종인 Extreme Learning Machine의 학습 알고리즘을 기반으로 하여 지능형 알고리즘인 퍼지 집합 이론을 이용하여 주변 노이즈에 매우 강한 특성을 보이며 학습 속도가 매우 빠른 새로운 패턴 분류기를 제안한다. 제안된 퍼지 패턴 분류기는 기존 신경회로망의 학습 속도에 비해 매우 빠른 학습 속도를 보이며, 패턴 분류기의 일반화 성능이 우수하다고 알려진 Extreme Learning Machine의 특성을 퍼지 집합 이론과 결합하여 퍼지 패턴 분류기의 일반화 성능을 개선하였다. 제안된 퍼지 패턴 분류기는 얼굴 인식 데이터를 이용하여 성능을 평가 하였다.

  • PDF

Neural Networks Intelligent Characters for Learning and Reacting to Action Patterns of Opponent Characters In Fighting Action Games (대전 게임에서 상대방 캐릭터의 행동 패턴을 학습하여 대응하는 신경망 지능 캐릭터)

  • 조병헌;정성훈;성영락;오하령
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.41 no.6
    • /
    • pp.69-80
    • /
    • 2004
  • This paper proposes a method to learn action patterns of opponent characters for intelligent characters. For learning action patterns, intelligent characters learn the past actions as well as the current actions of opponent characters. Therefore, intelligent characters react more properly than ones without the knowledge on action patterns. In addition, this paper proposes a method to learn moving actions whose fitness is hard to evaluate. To evaluate the performance of the proposed algorithm, we experiment with four repeated action patterns in a game similar to real games. The results show that intelligent characters learn the optimal actions for action patterns and react properly against to random action opponent characters. The proposed method can be applied to various games in which characters confront each other, e.g. massively multiple of line games.

Distortion-guided Module for Image Deblurring (왜곡 정보 모듈을 이용한 이미지 디블러 방법)

  • Kim, Jeonghwan;Kim, Wonjun
    • Journal of Broadcast Engineering
    • /
    • v.27 no.3
    • /
    • pp.351-360
    • /
    • 2022
  • Image blurring is a phenomenon that occurs due to factors such as movement of a subject and shaking of a camera. Recently, the research for image deblurring has been actively conducted based on convolution neural networks. In particular, the method of guiding the restoration process via the difference between blur and sharp images has shown the promising performance. This paper proposes a novel method for improving the deblurring performance based on the distortion information. To this end, the transformer-based neural network module is designed to guide the restoration process. The proposed method efficiently reflects the distorted region, which is predicted through the global inference during the deblurring process. We demonstrate the efficiency and robustness of the proposed module based on experimental results with various deblurring architectures and benchmark datasets.

Electrical Arc Detection using Artificial Neural Network (인공 신경망을 이용한 전기 아크 신호 검출)

  • Lee, Sangik;Kang, Seokwoo;Kim, Taewon;Lee, Seungsoo;Kim, Manbae
    • Journal of Broadcast Engineering
    • /
    • v.24 no.5
    • /
    • pp.791-801
    • /
    • 2019
  • The serial arc is one of factors causing electrical fires. Over past decades, various researches have been carried out to detect arc occurrences. Even though frequency analysis, wavelet and statistical features have been used, arc detection performance is degraded due to diverse arc waveforms. Therefore, there is a need to develop a method that could increase the feature dimension, thereby improving the detection performance. In this paper, we use variational mode decomposition (VMD) to obtain multiple decomposed signals and then extract statistical features from them. The features from VMD outperform those from no-VMD in terms of detection performance. Further, artificial neural network is employed as an arc classifier. Experiments validated that the use of VMD improves the classification accuracy by up to 4 percent, based on 14,000 training data.

Tonality Design for Sound Quality Evaluation for Gear Whine Sound (승합차량의 액슬기어 음질의 평가를 위한 새로운 순음도 모델 개발과 응용)

  • Kim, Eui-Youl;Jang, Ji-Uk;Lee, Sang-Kwon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.12
    • /
    • pp.1172-1183
    • /
    • 2012
  • Aure's tonality was considered as the sound metrics for the expression of the tonality of gear whine sound in a previous research. It was failed to use the Aure's tonality as a sound metric for the tonal impression. Thus Aures's tonality, was developed for tonal impression in previous research. However, this metric did not express well the tonality of gear whine sound since the whine sound is a non-stationary signal with frequency modulation and amplitude modulation. In this study, the new method for the tonality evaluation for a non-stationary signal is presented. It is developed based on the prominence ratio, tonality impression function, and lower threshold level. It improves the accuracy and reliability of the sound quality index being used for the sound quality evaluation of the axle-gear whine sound.

Memristor Bridge Synapse-based Neural Network Circuit Design and Simulation of the Hardware-Implemented Artificial Neuron (멤리스터 브리지 시냅스 기반 신경망 회로 설계 및 하드웨어적으로 구현된 인공뉴런 시뮬레이션)

  • Yang, Chang-ju;Kim, Hyongsuk
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.5
    • /
    • pp.477-481
    • /
    • 2015
  • Implementation of memristor-based multilayer neural networks and their hardware-based learning architecture is investigated in this paper. Two major functions of neural networks which should be embedded in synapses are programmable memory and analog multiplication. "Memristor", which is a newly developed device, has two such major functions in it. In this paper, multilayer neural networks are implemented with memristors. A Random Weight Change algorithm is adopted and implemented in circuits for its learning. Its hardware-based learning on neural networks is two orders faster than its software counterpart.

Computer Vision and Neuro- Net Based Automatic Grading of a Mushroom(Lentinus Edodes L.) (컴퓨터시각과 신경회로망에 의한 표고등급의 자동판정)

  • Hwang, Heon;Lee, Choongho;Han, Joonhyun
    • Journal of Bio-Environment Control
    • /
    • v.3 no.1
    • /
    • pp.42-51
    • /
    • 1994
  • Visual features of a mushromm(Lentinus Edodes L.) are critical in sorting and grading as most agricultural products are. Because of its complex and various visual features, grading and sorting of mushrooms have been done manually by the human expert. Though actions involved in human grading look simple, it decision making underneath the simple action comes from the result of the complex neural processing of visual image. Recently, an artificial neural network has drawn a great attention because of its functional capability as a partial substitute of the human brain. Since most agricultural products are not uniquely defined in its physical properties and do not have a well defined job structure, the neuro -net based computer visual information processing is the promising approach toward the automation in the agricultural field. In this paper, first, the neuro - net based classification of simple geometric primitives were done and the generalization property of the network was tested for degraded primitives. And then the neuro-net based grading system was developed for a mushroom. A computer vision system was utilized for extracting and quantifying the qualitative visual features of sampled mushrooms. The extracted visual features of sampled mushrooms and their corresponding grades were used as input/output pairs for training the neural network. The grading performance of the trained network for the mushrooms graded previously by the expert were also presented.

  • PDF

Nonlinear Prediction of Streamflow by Applying Pattern Recognition Method (패턴 인식 방법을 적용한 하천유출의 비선형 예측)

  • 강관원;박찬영;김주환
    • Water for future
    • /
    • v.25 no.3
    • /
    • pp.105-113
    • /
    • 1992
  • The purpose of this paper is to introduce and to apply the artificial neural network theory to real hydrologic system for forecasting daily streamflows during flood periods. The hydrologic dynamic process of rainfall-runoff is identified by the iterated estimation of system parameters that are determined by adjusting the weights of the network according to the non-linear response characteristics which is formed the model. Back propagation algorithm of neural network model is applied for the estimation of system parameters with past daily rainfall and runoff series data, and streamflows are forecasted using the parameters. The forecasted results are analyzed by statistical methods for the comparison with the observed.

  • PDF

Automatic Interpretation of F-18-FDG Brain PET Using Artificial Neural Network: Discrimination of Medial and Lateral Temporal Lobe Epilepsy (인공신경회로망을 이용한 뇌 F-18-FDG PET 자동 해석: 내.외측 측두엽간질의 감별)

  • Lee, Jae-Sung;Lee, Dong-Soo;Kim, Seok-Ki;Park, Kwang-Suk;Lee, Sang-Kun;Chung, June-Key;Lee, Myung-Chul
    • The Korean Journal of Nuclear Medicine
    • /
    • v.38 no.3
    • /
    • pp.233-240
    • /
    • 2004
  • Purpose: We developed a computer-aided classifier using artificial neural network (ANN) to discriminate the cerebral metabolic pattern of medial and lateral temporal lobe epilepsy (TLE). Materials and Methods: We studied brain F-18-FDG PET images of 113 epilepsy patients sugically and pathologically proven as medial TLE (left 41, right 42) or lateral TLE (left 14, right 16). PET images were spatially transformed onto a standard template and normalized to the mean counts of cortical regions. Asymmetry indices for predefined 17 mirrored regions to hemispheric midline and those for medial and lateral temporal lobes were used as input features for ANN. ANN classifier was composed of 3 independent multi-layered perceptrons (1 for left/right lateralization and 2 for medial/lateral discrimination) and trained to interpret metabolic patterns and produce one of 4 diagnoses (L/R medial TLE or L/R lateral TLE). Randomly selected 8 images from each group were used to train the ANN classifier and remaining 51 images were used as test sets. The accuracy of the diagnosis with ANN was estimated by averaging the agreement rates of independent 50 trials and compared to that of nuclear medicine experts. Results: The accuracy in lateralization was 89% by the human experts and 90% by the ANN classifier Overall accuracy in localization of epileptogenic zones by the ANN classifier was 69%, which was comparable to that by the human experts (72%). Conclusion: We conclude that ANN classifier performed as well as human experts and could be potentially useful supporting tool for the differential diagnosis of TLE.

RC Circuit Parameter Estimation for DC Electric Traction Substation Using Linear Artificial Neural Network Scheme (선형인공신경망을 이용한 직류 전철변전소의 RC 회로정수 추정)

  • Bae, Chang Han;Kim, Young Guk;Park, Chan Kyoung;Kim, Yong Ki;Han, Moon Seob
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.3
    • /
    • pp.314-323
    • /
    • 2016
  • Overhead line voltage of DC railway traction substations has rising or falling characteristics depending on the acceleration and regenerative braking of the subway train loads. The suppression of this irregular fluctuation of the line voltage gives rise to improved energy efficiency of both the railway substation and the trains. This paper presents parameter estimation schemes using the RC circuit model for an overhead line voltage at a 1500V DC electric railway traction substation. A linear artificial neural network with a back-propagation learning algorithm was trained using the measurement data for an overhead line voltage and four feeder currents. The least square estimation method was configured to implement batch processing of these measurement data. These estimation results have been presented and performance analysis has been achieved through raw data simulation.