• 제목/요약/키워드: 익명화

검색결과 95건 처리시간 0.029초

데이터 익명화 결정 기법 (Data Anonymity Decision)

  • 정민경;홍동권
    • 한국지능시스템학회논문지
    • /
    • 제20권2호
    • /
    • pp.173-180
    • /
    • 2010
  • 공개되는 데이터에서 각 개인의 민감한 정보를 보호하기 위한 방법으로 데이터 익명화에 관한 연구가 활발히 이루어지고 있다. 대부분의 연구들은 익명화 요구 사항에 위배되지 않으면서, 효율적인 시간 내 레코드들을 일반화하는 기법을 중심으로 연구를 진행하고 있다. 익명화 작업이 많은 시간이 요구되는 문제임을 고려한다면, 민감한 정보에 대한 프라이버시 침해의 우려가 있는지, 익명화가 요구되는지를 미리 검사하는 것은 개인 정보 보호차원뿐만 아니라 데이터의 활용성 및 시간적 효율성 측면에서도 매우 중요하다. 또한, 그러한 침해의 우려가 있다면 어떤 유형의 공격에 취약한지를 미리 판단함으로써 그에 적절한 익명화 방식을 결정하는 것도 중요하다. 본 논문에서는 민감한 속성에 대한 공격 유형을 크게 2가지로 분류한다. 그리고 데이터가 이들 공격으로부터 안전한가의 여부를 검사할 수 있는 기법을 제시하고, 불안정하다면 어떠한 공격에 취약하고 대략 어떤 방식의 일반화가 요구되는가를 제시한다. 본 연구에서는 익명화되기 전의 테이블뿐만 아니라, 익명화된 테이블, 그리고 익명화가 되었지만 삽입, 삭제로 인해 변경된 테이블도 공격성 검사 대상이 된다. 뿐만 아니라 익명화된 테이블도 민감한 정보를 제대로 보호하고 있는지 혹은 삽입 삭제로 인해 재익명화 작업이 필요한지의 여부도 본 연구의 결과로 결정할 수 있다.

위치기반 서비스에서 신뢰할 수 있는 익명화 서버를 사용하지 않는 프라이버시 보호 기법 (Privacy protection technique without trusted anonymization server in location based service)

  • 정강수;박석
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2012년도 한국컴퓨터종합학술대회논문집 Vol.39 No.1(C)
    • /
    • pp.175-177
    • /
    • 2012
  • 사용자의 위치 정보를 사용한 위치기반 서비스가 증가하면서 프라이버시 노출에 대한 위협도 증가하고 있다. 본 논문은 기존 기법에서 신뢰할 수 있는 익명화 서버를 통해 수행하던 익명화 과정을 가상 개인 서버를 통한 overlay 네트워크를 사용하여 신뢰할 수 있는 익명화 서버의 존재 없이 수행한다. 또한 질의의 주체가 익명화 서버가 아닌 사용자가 됨으로써 추가적인 정보의 노출을 방지한다.

빅데이터 환경에서 개인정보보호를 위한 익명화된 데이터의 비익명화를 통한 데이터 안전성 테스트 방법론에 관한 연구 (A Study on Data Safety Test Methodology through De-Anonymization of Anonymized data for Privacy in BigData Environment)

  • 이재식;오용석;김호성
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2013년도 추계학술발표대회
    • /
    • pp.684-687
    • /
    • 2013
  • 빅데이터 환경은 수많은 데이터의 조합으로 가치를 발견하여 이를 활용하는 것이다. 이러한 환경의 전제조건은 데이터의 공개 및 공유 개방이 될 것이다. 하지만 데이터 공개 시 개인정보와 같은 정보가 포함되어 법적 도덕적인 문제나 공개된 정보의 범죄 활용 등 2차적인 피해가 발생할 수 있어 데이터 공개 시 개인정보에 대한 익명화가 반드시 필요하다. 하지만 익명화된 데이터는 다른 정보와 결합을 통하여 재식별되어 비익명화 될 가능성이 항상 존재한다. 따라서 본 논문에서는 데이터 공개 시 익명화된 데이터를 공개하기 전에 재식별성에 대한 위험을 평가하는 테스트 방법론을 제안한다. 제안하는 방법론은 실제 테스트를 수행하는 3가지 과정 및 테스트 레벨 설정과 익명화 시 고려해야 할 부분으로 이루어져 있다. 제안하는 방법론을 통하여 안전한 데이터 공개 환경이 조성되어 빅데이터 시대에 개인정보에 안전한 데이터 공유와 개방이 이루어질 것으로 기대한다.

프라이버시 보호를 위한 소셜 네트워크의 익명화 비용에 관한 연구 (A study on anonymization cost of social network for privacy preservation)

  • 박치성;강주성;이옥연
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2011년도 추계학술발표대회
    • /
    • pp.903-906
    • /
    • 2011
  • 소셜 네트워크를 통해 수집된 수많은 데이터들은 여러 분야에 중요한 자료로 활용되고 있으며, 소셜 네트워크상의 데이터들이 이용되면서 개인정보가 노출되는 프라이버시 문제가 발생하고 있다. 프라이버시 문제를 해결하기 위한 실용적인 방안으로 k-익명성, l-다양성 등의 개념과 이를 토대로 한 데이터 익명화 방법이 제안되어 있다. 데이터의 익명화에서는 원본데이터의 왜곡을 최소화하면서 프라이버시 보호를 극대화하는 것이 목적이다. 이러한 목적을 달성하기 위해 익명화 비용을 측정하기 위한 합리적인 방법이 필요하다. 본 논문에서는 소셜 네트워크 그래프의 익명화 알고리즘 수행을 위해 필수적 요소인 익명화 비용을 합리적이고 실용적으로 측정하는 방법을 제안한다.

실시간 위치 모니터링 시스템에서 협업 기반 위치 프라이버시 보호 기법 (A Cooperative Privacy-Presercation Method in a Real-Time Location Monitoring System)

  • 윤재열;정하림;김응모
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2012년도 한국컴퓨터종합학술대회논문집 Vol.39 No.1(C)
    • /
    • pp.4-6
    • /
    • 2012
  • 본 논문은 실시간 위치 모니터링 시스템에서 개인의 위치 프라이버시 보호 문제에 대해 논한다. 위치기반 서비스 제공자를 통한 위치 모니터링은 위치 노출에 의한 개인의 프라이버시를 침해할 위험이 있으므로, 본 논문에서는 신뢰할 수 있는 익명화서버를 활용하는 시스템 환경을 채택한다. 익명화서버의 주된 역할은 location k-anonymity 개념을 활용하여 특정 개인의 위치를 클로킹 영역으로 표현하여 익명화 시키는 것이다. 기존의 기법들은 클로킹 영역을 생성하기 위해 개인이 휴대용 단말기를 통해 자신의 현재 위치를 주기적으로 익명화서버에게 보고하고, 익명화 서버는 반복적으로 클로킹 영역을 재생성하 는 시스템 모델을 가정한다. 하지만, 이는 메시지 송신에 의한 개인의 휴대용 단말기의 에너지 소비를 증가시킬 뿐만 아니라, 익명화서버의 작업부하를 크게 증가시켜 시스템 성능을 저하 시킨다. 이러한 단 점을 극복하기 위해, 본 논문은 개인의 휴대용 단말기의 연산 능력을 활용하여 클로킹 영역을 생성 유지할 수 있는 개인-익명화서버 협업 위치 프라이버시 보호 기법을 제안한다. 기본적인 아이디어는 특정 수의 클로킹 영역들을 개인에게 할당하여 클로킹 영역의 생성 유지 작업을 익명화서버와 공유하게 하는 것이다. 시뮬레이션을 통해, 익명화 서버의 작업부하와 개인의 메시지 송신 측면에서 제안하는 기법의 우수성을 입증한다.

효과적인 k-RDFAnonymity를 위한 알고리즘 구현 (Implementation of algorithm for effective k-RDFAnonymity)

  • 전민혁;;서광원;안진현;임동혁
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2018년도 추계학술발표대회
    • /
    • pp.285-287
    • /
    • 2018
  • 최근 정부 및 기업단체에서 배포하는 데이터의 규모가 점점 방대해지고 있다. 민간에서는 이러한 공개데이터를 자유롭게 사용할 수 있으나, 공개 데이터에는 개인의 프라이버시를 침해할 수 있는 개인정보도 포함되어 있다. 그에 따라 대두된 문제가 공개데이터 중 개개인의 정보를 식별해낼 수 없도록 하는 데이터의 비식별화이며 그로 인해서 비식별화에 관한 많은 익명화 기법과 프라이버시 모델이 발표되었다. 그중 본 논문에서 사용하는 Mondrian algorithm은 k-익명화 모델을 사용하여 효과적으로 데이터를 비식별화 할 수 있다. 또한 방대한 웹 데이터 자원 간의 관계를 표현해놓은 RDF 모델은 DB로 변환시켜 k-익명화 방법인 kRDF에 Mondrian algorithm의 Multi-dimensional 방식을 따라 익명화하여 범용적이고 효과적인 개인정보 데이터의 프라이버시 보호를 구현하고자 한다.

프라이버시 보호를 위한 RFID 익명화 메커니즘 (RFID Anonymization Mechanism for Privacy Protection)

  • 이동혁;송유진
    • 한국정보보호학회:학술대회논문집
    • /
    • 한국정보보호학회 2006년도 하계학술대회
    • /
    • pp.574-578
    • /
    • 2006
  • 유비쿼터스 컴퓨팅 환경에서는 센서를 통하여 실시간의 상황인식 서비스를 제공하며, 이를 위해 사용자의 위치 정보 수집이 필요하다. NTT에서는 RFID에 대한 익명화를 통한 프라이버시보호 메커니즘을 제안하였다. 그러나, 불법적으로 접근하는 리더가 존재할 경우 i값의 비동기화를 통한 태그에 대한 Random Tampering공격이 가능하다. 본 논문에서는 NTT 연구소의 RFID 익명화 방법을 개선하여 태그의 Random Tampering 공격 방지가 가능하고, 태그와 리더 상호간 인증이 가능하며, 연산 과정을 절감시킨 새로운 RFID 익명화 프로토콜을 제안한다. 제안한 방법을 통하여 보다 안전하고 효율적으로 RFID기반 센서 네트워크 환경에서 사용자의 프라이버시를 보호할 수 있다.

  • PDF

관계형 데이터베이스에서 데이터 그룹화를 이용한 익명화 처리 기법 (The De-identification Technique Using Data Grouping in Relational Database)

  • 박준범;진승헌;최대선
    • 정보보호학회논문지
    • /
    • 제25권3호
    • /
    • pp.493-500
    • /
    • 2015
  • 정부 3.0 공공정보 공유 및 개방, 소셜네트워크서비스의 활성화 그리고 사용자 간의 공유 데이터 증가로 인터넷상에 노출되는 사용자의 개인 정보가 증가하고 있다. 이에 따라 프라이버시를 지키기 위한 익명화 알고리즘이 등장하였으며 관계형 데이터베이스에서의 익명화 알고리즘은 k-익명성(k-anonymity)을 시작으로 ${\ell}$-다양성(${\ell}$-diversity), t-밀집성(t-closeness)으로 발전하였다. 익명화 알고리즘의 성능 향상 부분은 계속해서 효율적인 방법이 제안되고 있지만, 기업이나 공공기관에서는 알고리즘 성능의 향상보다는 전체적인 익명화 처리 방법이 필요한 실정이다. 본 논문에서는 관계형 데이터베이스에서 데이터의 그룹화를 이용하여 k-익명성, ${\ell}$-다양성, t-밀집성 알고리즘을 처리하는 과정을 구체화하였다.

일반화와 데이터 삽입을 이용한 익명화 처리 기법 (A de-identification technique using generalization and insert a salt data)

  • 박준범;조진만;최대선;진승헌
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2015년도 춘계학술발표대회
    • /
    • pp.351-353
    • /
    • 2015
  • 공공정보 공유 및 개방, 소셜네트워크서비스의 활성화 그리고 사용자 간의 공유 데이터 증가 등의 이유로 인터넷상에 노출되는 사용자의 개인 정보가 증가하고 있다. 인터넷상에 노출된 사용자들의 개인정보들은 연결공격(linkage attack), 배경지식 공격(background attack)으로 프라이버시를 침해할 수 있다. 이를 막기 위해 관계형 데이터베이스에서는 대표적으로 k-익명성(k-anonymity)을 시작으로 l-다양성(l-diversity), t-밀집성(t-closeness)이라는 익명화 모델이 제안되었으며 계속해서 익명화 알고리즘의 성능은 개선되고 있다. 하지만 k-익명성, l-다양성, t-밀집성 모델의 조건을 만족하기 위해서는 준식별자(quasi-identifier)를 일반화(generalization)처리 해주어야 하는데 이 과정에서 준식별자의 가치를 손실된다는 단점이 있다. 본 논문에서 준식별자의 정보 손실을 최소화하기 위해 k-익명성 모델을 만족시키는 과정에서 일반화와 데이터를 삽입을 사용하는 익명화 처리하는 방법을 제안한다.

k-익명화 알고리즘에서 기계학습 기반의 k값 예측 기법 실험 및 구현 (Experiment and Implementation of a Machine-Learning Based k-Value Prediction Scheme in a k-Anonymity Algorithm)

  • ;장성봉
    • 정보처리학회논문지:컴퓨터 및 통신 시스템
    • /
    • 제9권1호
    • /
    • pp.9-16
    • /
    • 2020
  • 빅 데이터를 연구 목적으로 제3자에게 배포할 때 프라이버시 정보를 보호하기 위해서 k-익명화 기법이 널리 사용되어 왔다. k-익명화 기법을 적용할 때, 해결 해야할 어려운 문제 중의 하나는 최적의 k값을 결정하는 것이다. 현재는 대부분 전문가의 직관에 근거하여 수동으로 결정되고 있다. 이러한 방식은 익명화의 성능을 떨어뜨리고 시간과 비용을 많이 낭비하게 만든다. 이러한 문제점을 해결하기 위해서 기계학습 기반의 k값 결정방식을 제안한다. 본 논문에서는 제안된 아이디어를 실제로 적용한 구현 및 실험 내용에 대해서 서술 한다. 실험에서는 심층 신경망을 구현하여 훈련하고 테스트를 수행 하였다. 실험결과 훈련 에러는 전형적인 신경망에서 보여지는 패턴을 나타냈으며, 테스트 실험에서는 훈련에러에서 나타나는 패턴과는 다른 패턴을 보여주고 있다. 제안된 방식의 장점은 k값 결정시 시간과 비용을 줄일 수 있다는 장점이 있다.