본 연구는 무한급수와 멱급수의 발생 배경과 발달 과정의 인식론적 토대가 되었던 뉴턴의 이항정리(binomial theorem)의 개념을 살펴보고, 그 발달 과정에서 얻어진 제곱근의 근삿값 구하는 방법, 뉴턴의 역유율법을 이용한 정적분 구하는 방법, 그리고 메르카토어 급수와 그레고리 급수의 발견 과정을 알아보고자 한다. 이 과정을 통하여 뉴턴의 이항정리가 가지는 수학사의 교수법적 논의를 제시하고자 한다.
Communications for Statistical Applications and Methods
/
제16권5호
/
pp.731-743
/
2009
이항비율에 대한 구간추정의 문제는 오래전부터 많이 다루어져 왔다. 본 논문에서는 주요 신뢰구간들의 특성을 비교하고 신뢰구간의 평가기준인 포함확률과 신뢰구간의 길이에 대해 이제까지 다루어져온 문제들을 종합 정리해 보았다. 실제로 이항신뢰구간 문제를 다룰 때 고려해야 할 3가지 추가 사항들을 살펴보고, 이항비율 추정에 늘 문제가 되는 낮은 이항비율에 대한 향후 논의 사항들을 제시하였다.
본 연구는 수학영재의 심화학습을 위한 주제로 사용해 볼 수 있는 이항계수의 정의와 성질을 탐구하고, 이로부터 수학적 귀납법, 이항정리, 조합의 정의, 도로망 상황 모델 등을 이용한 이항계수가 포함된 등식의 문제해결방법을 연구하였다. 그리고 이러한 내용들이 수학영재 학생들에게는 충분히 탐구의 대상이 될 수 있어 수학영재 교육의 심화학습 주제로 적절하게 다루어질 수 있다는 것과, 수학의 깊은 의미를 경험할 수 있는 학습주제로 사용될 수 있다는 것을 학생들에게 지도한 예시로 소개한다.
교통사고예측 및 예방을 위해서는 실제적으로 도로설계과정에서 제어가 가능한 도로 기하구조요소에 대한 사고관계를 파악함이 타당하다. 즉, 도로의 설계자는 도로건설에 앞서 기하구조요소와 사고와의 관계를 현장자료를 통해 정확히 밝혀 도로설계에 반영해야 한다. 이를 위해, 교통사고의 빈도분포를 박히는 것은 가장 기본이 되는 일이며, 교통사고 예측모형개발에 선행되어야 한다. 일반적으로 교통사고건수의 경우 분산이 평균보다 큰 과분산(overdispersion)의 특징을 가지고 있어 음이항 분포를 따른다고 알려져 있다. 따라서 본 논문은 사고모형의 개발에 앞서, 사고발생지점에 대한 도로설계요소와 기타 잠재적인 사고발생 관련요인이 비교적 잘 파악되어있는 호남고속도로를 중심으로 평면 선형상 곡선부에 대하여 교통사고의 분포를 적합도 검정을 통해 알아보고자 하였다. 사고자료는 한국도로송사의 호남고속도로 5년(1996∼2000)간 자료를 분석에 맞게 정리하였으며, 강민욱과 송봉수(2002)에서 제시한 평면선형에 있어서의 구간분할법을 이용하여 배향곡선구간과 단일곡선구간에 대한 사고분석을 하였다. 적합도 분석결과, 예상대로 음이항분포가 사고건수를 설명하기에 가장 적합한 확률분포로 제시되었으며, 이를 통해 최우추정법을 이용한 음이항회귀모형을 개발하였다. 구간분할법을 적용한 음이항회귀모형의 경우, 기존의 확률회귀토형에 비하여 높은 결정계수를 갖았으며, 모형에서 적용된 기하구조요소로는 차량 노출계수, 곡선반경, 단위거리 당 편경사변화값 등이다.
이 연구는 경기과학고등학교 1학년 학생 5명을 대상으로 사사연구를 진행하면서 학생들이 탐구한 수학적인 내용에 대한 분석과 그 결과가 나오기까지 멘토링을 하는 지도교수의 역할을 설명하고 있다. 학생들이 탐구한 수학적인 내용은 4차원 도형의 모양과 그 도형들에 나타나는 수학적인 성질이다. 지도교수는 연구에 익숙하지 않은 학생들을 위하여 수학자 피코크가 제안했던 '형식불역의 원리'를 모델로 삼도록 했고, 지도교수는 학생들의 창조적인 산출물 생산을 격려하기 위해 수학교육학자 프로이덴탈의 '안내된 재발명의 방법'을 사용하였다. 학생들은 지도교수의 안내에 의한 (재)발명의 원리에 따라 기존에 이미 알고 있던 수학적 성질을 고차원 도형에 적용시키면서 확장, 일반화시켜나갔는데, 여기에는 '형식불역의 원리'라는 틀이 매우 유용하게 작용하였다. 지도교사는 학생들에게 3차원 도형을 2차원에 표현하는 겨냥도, 전개도, 평면그래프를 응용하여 4차원을 3차원과 2차원에 표현하는 방식을 탐구하도록 하였다. 이 과정에서 학생들은 이미 알려진 파스칼의 삼각형과 이항정리, 오일러 정리, 하세의 다이어그램 등을 4차원 이상의 도형을 탐구할 때에도 적용할 수 있음을 확인하였다. 그리고 몇 가지의 추측과 후속 연구 과제를 제안하였다. 학생들의 산출물들은 형식불역의 원리와 안내된 재발명의 방법의 결과물인 것이다. 이 연구는 사사연구의 과정에 도움이 될 수 있는 3가지의 제안과 그 실 예를 담고 있다.
In this paper we investigate how Newton discovered the generalized binomial theorem. Newton's binomial theorem, or binomial series can be found in Calculus text books as a special case of Taylor series. It can also be understood as a formal power series which was first conceived by Euler if convergence does not matter much. Discovered before Taylor or Euler, Newton's binomial theorem must have a good explanation of its birth and validity. Newton learned the interpolation method from Wallis' famous book ${\ll}$Arithmetica Infinitorum${\gg}$ and employed it to get the theorem. The interpolation method, which Wallis devised to find the areas under a family of curves, was by nature arithmetrical but not geometrical. Newton himself used the method as a way of finding areas under curves. He noticed certain patterns hidden in the integer binomial sequence appeared in relation with curves and then applied them to rationals, finally obtained the generalized binomial sequence and the generalized binomial theorem.
현대 사회에서 정보보안의 문제는 사회적 큰 이슈이므로 이에 필수적인 암호에 대한 사회적 관심도가 높아지고 있다. 암호기법 중 시각암호기법은 행렬과 조합, 이항정리와 같은 고등학교 수준의 수학내용이 실제로 어떻게 응용되는가를 보여줄 뿐 아니라 수학에 흥미가 있는 학생이라면 쉽게 접근할 수 있는 부분이다. 이 논문에서는 n개의 슬라이드 중 2개를 겹치면 비밀정보를 복원할 수 있는 (2,n) 시각암호 기법에서 표본행렬을 이용하여 비밀분산을 가능하게 하는 방법을 소개한다. 간단한 표본행렬을 이용하여 복수의 휘도를 허용함으로서 확장 화소의 수를 대폭적으로 줄일 수 있는 구성법과 그룹화에 의해 복수의 비밀정보를 분산 및 복원시킬 수 있는 응용방법을 제안하며 이러한 방법이 확장 화소의 수와 상대휘도의 관점에서 기존의 기법에 비해 성능이 우수함을 보이고자 한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.