문서 이미지의 이진화는 문서 인식의 이전 단계에서 주로 사용되며, 이진화의 성공 여부에 따라 문서 인식의 결과에 영향을 미치는 중요한 단계로 볼 수 있다. 지금까지 문서 이미지를 이진화 하기 위한 다양한 기법들이 연구되었지만, 문서 이미지의 상태에 따라 그 결과는 다양하다. 본 논문에서는 객체 추출에 많이 이용되는 MSER(Maximally Stable Extremal Region)을 이용하여 문서 이미지를 이진화하는 기법을 제안한다. 먼저 문서 이미지에서 MSER 객체를 추출한다. 추출된 MSER 객체는 그 자체로 문서 이미지 이진화에 사용되기는 어렵기 때문에 사용하기 적합한 형태로 변경되는 과정을 거친다. 그리고 최종 MSER 객체와 문서 이미지로부터 추출한 대비 이진 이미지를 이용하여 최종 이진 이미지를 계산한다. 실험결과는 본 논문에서 제안한 방법이 문서 이미지의 이진화에 유용함을 보여준다.
본 논문에서 우리는 이진 이미지에 기초한 정교한 방법을 소개한다. 이 기술은 이진 이미지와 하프톤이미지에 데이터를 저장하는 방법이다. 이진 이미지는 비트맵 이미지고 하프톤 이미지는 제한된 범위를 두 개의 값으로 구성한 이미지다. 이와 같은 이유 때문에, 이러한 이미지는 약간의 수정만으로 이미지의 질이 좋지 않다. 그러므로, 본 논문에서는 이러한 문제를 해결하기 위해, 이진 이미지에 RLE 기법을 적용하였다. 즉, 우리는 이 방법으로 메시지를 은폐하기에 적합한 장소를 찾는 것이 가능하다. 우리는 이진 이미지에 데이터를 은폐하는 새로운 기법을 본 논문에서 제한하였다. 또한, 우리는 PWLC 방법보다 우리가 제안한 알고리즘이 더 우수함을 실험을 통해서 입증하였다.
본 논문에서는 컴퓨터를 사용한 이진 위상 홀로그램의 설계시 요구되는 조합 최적화 문제(combinatorial optimization problem)를 유전자 알고리즘을 사용하여 해결하고자한다. 이진 위상 홀로그램의 설게는 출력 면에서 원하는 이미지를 생성하기 위하여 홀로그램의 각 셀에 이진 위상을 결정하는 것으로 최적화 문제로 귀착된다. 유전자 알고리즘을 이진 위상 홀로그램 설계에 효율적으로 적용하기 위하여 이차원 염색체 부호화 및 주기성을 고려한 교차 연산자등을 사용하면, 그 결과 홀로그램 설계시 요구되는 이차원 퓨리에 변환(Fourier transform)을 자연스럽고 효율적인 방법으로 수행할수 있다. 유전자 알고리즘을 사용하여 구한 최적의 이진 위상 배열로 공간 빛 변조기(spatial light modulator, SLM)를 이용하여 광학적으로 이미지를 재생하고, 재생된 광학 이미지는 원하는 이미지와 거의 일치함을 보인다.
딥러닝은 다양한 컴퓨터 비전 문제를 해결할 수 있지만, 대량의 데이터셋이 필요하다. 본 논문에서는 대형 이미지 데이터셋을 구축하기 위해 이미지 이진화 기반 데이터 증강 기법을 제안한다. 이미지 이진화를 사용하여 특성을 추출하고 추출된 나머지 픽셀을 랜덤하게 배치하여 새로운 이미지를 생성한다. 생성된 이미지는 원본 이미지와 유사한 품질을 보여주며, 딥러닝 모델에서도 뛰어난 성능을 보였다.
기존의 텍스트 추출을 위한 이진화 방법은 입력 이미지를 명도 이미지로 변환한 뒤 이진화 하는 방법을 사용하였다. 이러한 방법은 칼라 이미지에서는 극명히 구분되는 색이라 할지라도 명도 이미지로 변환하는 과정에서 같은 밝기를 같게 되는 경우(예를 들어, 배경은 붉은색, 텍스트는 초록색), 텍스트를 추출하는 데 어려움이 있다. 본 논문에서는 이러한 문제를 해결하기 위해 입력 이미지를 R, G, B로 분리하고 각각을 이진화 하여 텍스트를 추출하고 다해상도 웨이블릿(Wavelet) 변환을 이용하여 텍스트의 획 특징을 추출하여 추출된 특징들을 SVM(Support Vector Machine) 분류기로 검증하여 최종 텍스트 영역을 확정한다. 제안한 방법을 적용함으로써 명도 정보만으로는 추출하기 어려웠던 텍스트 영역을 효과적으로 추출하고 텍스트와 구별하기 어려운 영역을 획수준으로 검증할 수 있었다.
공간 데이터를 표현하고 처리하기 위해 사분트리 또는 이분트리 등의 계층형 자료 구조가 사용되고 있다. 이분 트리를 선형적으로 표현하기 위해 기존에 제안된 S-트리는 이진 영역 이미지 데이터를 선형적인 이진 비트열로 표현하여 저장 공간을 크게 압축할 수 있는 장점이 있으나, 이미지의 해상도가 높아질수록 이진 비트열의 길이가 길어져 저장 공간이 늘어나고 탐색 성능이 저하되는 문제점이 발생한다. 본 논문에서는 포화 이진 트리 구조를 갖는 여러 개의 분할 이분트리를 계층적으로 구성하고 각 분할 이분트리를 2개의 선형적 이진 비트열로 표현하여 이미지 탐색에 필요한 범위를 축소하는 한편 이진 비트열 경로를 직접 탐색하지 않고 간단한 숫자 변환을 통해 수행하도록 하여 전체적인 탐색 성능을 개선하였다. 최악의 시공간 복잡도 분석에 의한 성능 평가를 통해 제안 방법이 기존의 방법에 비해 우수한 검색 성능과 공간 효율성을 보이는 것으로 분석되었다.
본 논문은 이동 중의 차량으로부터 획득한 후면 번호판의 이미지를 이진화 할 경우의 문제점과 이의 해결책을 제시하였다. 후면 번호판을 이진화한 경우 태양의 고도와 차량 구조의 영향으로 그림자가 드리워진 이미지를 획득하게 되며 이 번호판의 이미지를 이진화 할 경우 문자를 인식하기에 좋지 않은 이미지를 획득하게 된다. 따라서 본 논문에서는 먼저 그림자 경계선을 파악하고 이를 이용하여 그림자가 드리워진 영역과 드리워지지 않은 영역을 구분한 후 각각의 영역을 이진화하는 방법을 제시하였다. 기존 발표되었던 이진화 방법들 중 일반 이진화, 타 논문 이진화, 블록 이진화, 라벨링 응용 이진화 들과 본 논문에서 제시한 방법을 비교 실험하여 성능분석 하였고, 실험결과, 대부분의 경우에 본 논문에서 제안한 방법이 타 방법에 비해 성능이 좋음을 확인할 수 있었다.
자연영상이나 스팸메일 영상으로부터 텍스트 영역을 추출하고 추출한 텍스트 영역에 이진화를 수행하고 나면 가로 방향이나 세로획 방향으로 놓여 있는 "1" 그리고 "ㅡ" 에 해당하는 한글의 종성부분이 이미지 내의 잡영을 지울 때 종종 지워지는 결과를 볼 수 있다. 이렇게 지워진 획 부분을 되살리기 위한 방법으로 텍스트 Hinting 알고리즘을 제안한다. 텍스트 Hinting 알고리즘은 이진화된 이미지의 텍스트 픽셀 위치와 동일한 좌표에 해당하는 원본 이미지의 RGB 값을 추출하여 추출된 텍스트 후보 영역의 색상을 알아낸다. 추출된 텍스트 색상 레이어 이미지와 이진화된 이미지에 OR연산을 수행하게 되면 지워진 획 부분을 복원할 수 있다. 제안한 방법을 스팸 이미지에 적용한 결과 텍스트 추출결과를 획기적으로 개선할 수 있음을 보였다.
본 논문에서는 공간적 정보로 이미지검색을 하는 모양 특징정보 기반 이미지 검색 시스템에서 검색효율을 향상 시킬 수 있는 이진 영상 변환 및 유사도 검색에 대한 기법을 제안하였다. 모양특징정보의 좀더 정확한 값의 추출을 위해 이미지의 잡음이 윤곽선으로 인식되는 값이 최소화 될 수 있도록 하는 이진 영상 변환방법을 제안하였으며, 유사도 검색에서는 영역별 특징정보 간의 비교와 병행하여 영역을 다시 소그룹화한 다음 소그룹간의 평균 유사도 값의 비교방법을 적용하였다. 성능 평가를 통하여 제안된 이진 영상 변환 겐 유사도 검색 방법을 사용한 경우 기존의 방법보다 향상된 검색 효율성을 보임을 알 수 있었다.
최근 딥 러닝을 이용한 방법들이 이미지 분류에서 뛰어난 성능을 보임에 따라, 컴퓨터 비전의 중요한 문제 중 하나인 이미지 검색에도 이를 활용하고 있다. 특히, 이미지 검색에 사용할 수 있는 이미지 기술자 (Image descriptor)를 깊은 신경망 구조의 일부분인 Fully-connected layer에서 추출하여 사용하는 방법들이 제시되고 있고, 이를 위해 알맞은 목적함수를 설계하여 깊은 신경망을 학습하는 것이 중요해지고 있다. 딥 러닝을 통해 얻은 이미지 기술자는 실수형 데이터로서, 한 장의 이미지를 수치화하여 표현하는 데 많은 메모리를 소모하게 된다. 이를 보완하기 위해 이미지 기술자를 작은 용량의 이진코드로 mapping 하는 해싱 (hashing) 이라는 과정이 필수적이나 이에 따른 한계점이 발생한다. 본 연구에서는 실수형 데이터가 갖는 거리 계산에서의 이점과 이진코드의 장점을 동시에 살릴 수 있는 Product Quantization 방식의 이미지 검색 방법을 이용하여 한계점을 극복하였다. 우리는 제안한 방법을 얼굴 이미지 데이터 셋에 실험하였고 기존 방식보다 뛰어난 성능을 보이는 것을 확인할 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.