영상 역 하프토닝은 입력된 하프톤 영상으로부터 그레이 영상을 복원시키는 것으로, 하프톤 영상으로 처리하지 못하는 다양한 영상처리를 가능하게 해주는 방법이다. 기존의 참조표를 이용한 역 하프토닝 방법은 다양한 하프톤 영상과 원본 그레이 영상으로부터 추출한 정보를 이용해 입력 영상을 복원시키는데, 본 논문에서는 이를 바탕으로 하여 영상의 질을 전반적으로 향상시킬 수 있는 국부적인 이진 패턴 기반 참조표를 이용한 영상 역 하프토닝 방법을 제안한다. 먼저 참조표를 이용한 역하프토닝 방법을 이용해 영상을 복원한 후 각 픽셀에서의 국부 이진패턴을 계산하여 각 픽셀 값을 패턴에 따라 분류한다. 분류된 패턴 정보에 따라 국부 이진 패턴 기반 참조표를 생성하고 이를 통해 입력 하프톤 영상에 대한 역 하프토닝을 수행한다. 실험 결과는 제안하는 알고리즘이 오류 확산법에 의해 변환된 하프톤 이미지를 역 하프토닝 했을 때, 기존의 역 하프토닝 방법에 비해 더 나은 PSNR을 달성하는 것을 보인다.
본 논문에서는 질감영상의 마이크로패턴 간 공간적인 동시발생 빈도를 고려한 패턴인식을 제안한다. 여기서 마이크로패턴은 블록영상의 중간값에 기반한 국소이진패턴(local binary pattern : LBP)으로 추출되고, 추출된 국소이진패턴들 사이의 동시발생빈도를 고려하여 패턴인식을 수행한다. 중간값 이진패턴은 영상의 국소속성을 고려할 뿐만 아니라 잡음에 강건한 패턴분석을 위함이고, 동시발생빈도는 영상의 전역속성을 고려하여 인식성능을 좀 더 향상시키기 위함이다. 제안된 기법을 120*120 픽셀의 17개 RGB 질감 패턴영상을 대상으로 유클리디언(Euclidean) 거리에 기반한 실험결과, 우수한 인식성능이 있음을 확인하였다.
본 논문에서는 비닐 튜브의 결함검사에 이용하기 위한 이진화 임계치의 자동 결정방법과 패턴매칭에 이용되는 패턴 모델의 자동 친정방법에 대하여 기술한다. 256 Gray 영상을 받아 들여 이진화 임계치를 결성하기 위해서, 휘도치 분포 곡선에서 2개의 극대값을 찾고, 두 극대 위치의 중간위치를 이진화 임계치로 결정하는 방법을 이용하였다. 그리고 패턴 모델을 생성하기 위하여는 수직, 수평 방향의 누적함(Profile)을 이용하였다. 이 방법은 인쇄물 검사 시스템뿐 아니라 비슷한 휘도치 분포를 같는 반도체 자동 검사 시스템을 비롯한 일반적인 건사 시스템에 적용이 가능하다.
동영상에서의 배경제거는 다양한 실시간 머신 비젼 응용에서 매우 중요한 단계이다. 본 논문에서는 이러한 배경제거를 위한 육각화소 기반의 새로운 접근 방법을 제안한다. 일반적으로 육각형 샘플링 영상은 양자화 오차가 적으며, 이웃화소의 연결성 정의를 크게 개선한다고 알려져 있는데, 제안된 방법은 비매개변수형 배경제거 방법의 하나인 지역적 이진패턴 기반 알고리즘에 이러한 육각 샘플링 영상을 적용하는 것을 특징으로 한다. 이를 통해, 지역적 이진패턴의 추출과정에서 필요한 쌍선형 보간을 없애고 계산량을 줄일 수 있었다. 실험을 통해 이러한 육각화소의 적용이 배경제거 분야에 매우 효율적으로 적용될 수 있음을 확인할 수 있었다.
본 논문에서는 MCS-LBP 이진패턴 영상과 2D-PCA 알고리즘을 이용한 조명 변화에 강인한 얼굴인식 시스템에 대하여 제안한다. 이진패턴 변환은 기존의 얼굴인식 및 표정인식 분야에 사용되는 기법으로, 일반적으로 조명 변화에 강인한 특성을 갖는다. 이에 본 논문에서는 기존의 LBP보다 조명 변화에 더 강인한 MCS-LBP를 제안하고, 더불어 2D-PCA 알고리즘과 결합하는 얼굴인식 시스템을 제안한다. 제안하는 얼굴인식 방법의 성능평가는 기존의 다양한 이진패턴 변환 영상과 얼굴인식에 널리 사용되고 있는 PCA, LDA, 2D-PCA 및 가버영상의 ULBP 히스토그램 특징을 사용하여 수행하였다. 다양한 조명변화 환경에서 구축된 YaleB, extended YaleB, CMU-PIE 등의 공인 얼굴 데이터베이스를 이용하여 실험한 결과, 제안하는 MCS-LBP영상과 2D-PCA 특징을 사용한 방법이 가장 우수한 인식 성능을 보였다.
단층 퍼셉트론이 처음 개발되었을 때, 간단한 패턴을 인식하는 학습 기능을 가지고 있기 장점 때문에 학자들의 관심을 끌었다. 단층 퍼셉트론은 한 개의 소자를 이용해서 이진 논리를 가중치(weight)의 변경만으로 모두 표현할 수 있는 장점 때문에 영상처리, 패턴인식, 장면인식 등에 이용되어 왔다. 최근에, 역전파학습(Back-Propagation Learning)알고리즘이 이진 공간내의 매핑 문제에 적용되고 있다. 그러나, 역전파 학습알고리즘은 연속공간 내에서 긴 학습시간과 비효율적인 수행의 문제를 가지고 있다. 일반적으로 역전파 학습 알고리즘은 간단한 이진 공간에서 매핑하기 위해서 많은 반복과정을 요구한다. 역전파 학습 알고리즘에서는 은닉층의 뉴런의 수는 주어진 문제를 해결하기 위해서 우선순위(prior)를 알지 못하기 때문에 입력층과 출력층내의 뉴런의 수에 의존한다. 따라서, 3층 신경회로망의 적용에 있어 가장 중요한 문제중의 하나는 은닉층내의 필요한 뉴런수를 결정하는 것이고, 회로망 합성과 가중치 결정에 대한 적절한 방법을 찾지 못해 실제로 그 사용 영역이 한정되어 있었다. 본 논문에서는 패턴 분류를 위한 새로운 학습방법을 제시한다. 훈련입력의 기하학적인 분석에 기반을 둔 이진 신경회로망내의 은닉층내의 뉴런의 수를 자동적으로 결정할 수 있는 NETLA(Newly Expand and Truncate Learning Algorithm)라 불리우는 기하학적 학습알고리즘을 제시하고, 시뮬레이션을 통하여, 제안한 알고리즘의 우수성을 증명한다.
이 논문에서는 트래킹 터널 또는 트래킹 카드를 이용하여 살아있는 곤충의 발자국을 획득한 후 남겨진 발자국 패턴을 이용하여 곤충의 부류나 종류를 판단하는 인식 시스템을 위한 전처리 과정을 살펴본다. 특히 발자국 패턴을 획득하는 과정과 곤충 발자국의 특징을 추출하기에 적합한 스캔된 발자국 이미지의 이진화 과정에 대하여 고찰한다. 이진화 과정에서는 기존에 발표된 대표적인 이진화 알고리듬 3가지를 구현하여 비교 분석하였다. 비교 분석 결과 Abutaleb에 의해 제안된 고차 엔트로피 이진화 알고리듬이 가장 우수한 결과를 보였다.
구조 광을 이용한 3차원 정보 획득 방법으로는 레이저 스캐닝 기술과 다양한 패턴을 투영 기술, 그리고 컬러 패턴을 이용한 기술 등이 존재한다. 여러 장의 이진 패턴을 사용하는 경우, 여러 장의 패턴영상을 영속적으로 투영해야 하므로 움직이는 물체가 있는 경우 3차원 복원이 불가능한 단점을 지니고 있으며, 이를 보안하기 위해 그레이 혹은 컬러 패턴을 사용하여 패턴의 영상수를 줄일 수는 있으나, 이 경우엔 깊이 맵의 해상도의 한계와 컬러 오브젝트로 인한 에러 발생 문제가 발생 한다. 본 논문에서는 PWM(Pulse Width Modulation)방식을 이용하여 이진 패턴과 컬러 패턴의 문제점을 보완할 수 있게 단일 영상, 즉 "One-Shot"으로 스캐닝 하는 알고리즘을 제시한다.
오차확산법은 계조화상을 이진화상으로 재현하는 것이 우수하지만 이진화상에 상관패턴이 생긴다. 본 논문에서는 오차확산계수의 주파수 분석을 통해서 상관패턴을 제거하고 경계를 강조하는 새로운 오차확산계수를 제안한다. 주목화소의 앞줄은 경계를 강조하도록 확산계수를 정하고 주목화소의 앞화소의 확산계수를 계수들이 대칭이 되도록 정한다. 그리고 제안하는 오차확산계수는 1,2로 구성되어 있기 때문에 계산량이 작다. 실험을 통해서 제안하는 확산계수를 이용한 이진화상의 화질이 기존의 확산계수를 이용한 이진화상보다 우수한 것을 보인다.
본 논문에서는 이동 가능한 로봇이 취득한 이진 평면도(binary floor map)의 필터링 알고리즘을 제안한다. 로봇청소기와 같은 가사로봇은 실내를 이동이면서 위치를 0 과 1 의 이진 코드로 기록함으로써 이진 실내 평면도를 생성하는데, 로봇의 위치센서 오류와 각종 장애물 등으로 인하여 이진 영상에 왜곡이 발생한다. 먼저 실내 평면도와 발생하는 왜곡의 특징을 분석하여 이를 효과적으로 검출하는 이진 패턴을 정의한다. 패턴에 기반한 모폴로지 변환(morphological transform)을 반복적으로 수행함으로써, 이진 실내 평면도의 왜곡을 줄이고 실제 평면도에 근사하도록 화질을 개선한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.