• Title/Summary/Keyword: 이중사출성형

Search Result 18, Processing Time 0.023 seconds

Determination of Molding Conditions of Double-Shot Injection Mold for the Computer Mouse via Three-Dimensional Injection Molding Analysis (3 차원 사출성형 해석을 통한 컴퓨터 마우스 제작용 이중사출성형 금형의 공정조건 결정)

  • Ahn, Dong-Gyu;Park, Min-Woo;Park, Jeong-Woo;Kim, Hyung-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.12
    • /
    • pp.1619-1625
    • /
    • 2011
  • The objective of this study determine the molding conditions of a double-shot injection mold for fabricating a computer mouse using different materials, by performing three-dimensional injection molding analysis. In order to select the optical injection molding conditions, the effects of the injection time, the maximum injection pressure, the effect of packing time on the injection molding characteristics, and the product qualities were quantitatively examined. From the results of the injection molding analysis, the optimal injection molding conditions of the double-shot injection mold, which leads the molded product to the minimized shrinkage and deflection, were estimated. The results of the injection molding experiments, showed that an appropriate computer mouse can be fabricated using different materials when the identified optimal injection molding conditions are adopted.

A Study on the Improvement of Double Injection-molding Keypad Process (이중 사출 키패드 성형 공정 개선에 관한 연구)

  • Hong, Min-Sung;Lee, Ji-Hoon;Shin, Soo-Hyun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.5
    • /
    • pp.659-665
    • /
    • 2011
  • Recently, the plastic resin such as PC, ABS are widely used in IT market. Especially, in most cases the keypads mounted on the mobile phone are the dual-injection-plated type. Environmental regulation is based on the quality of injection-molded products and the minimum process steps are required to avoid the plating defects. Various parameters to produce the injection-molded plastic products make it difficult to obtain the desired stability. However, the past experience and the use of CAE analysis make it possible to predict the problems occurred in injection molding process. Especially, the problems of the weld lines such as runner balancing, bending, deformation and forming defects can be solved systematically and minimized by CAE analysis. Through this study, the non-uniform volumetric shrinkage and the difference in temperature distribution induce the deformation and the high value of stress causes the problems such as crack.

Optimization of Injection Mold Fluidic System for the Square-type Cosmetic Case by Injection Molding Analysis Method (사출성형해석을 통한 화장품 사각 외장케이스 금형 유동시스템 구조 최적화)

  • Yoon, Gil-Sang;Kim, Gun-Hee;Lee, Jeong-Won;Sohn, Jong-In;Seo, Tae-Il;Kim, Yoo-Jin;Lee, Jung-Bae
    • Proceedings of the KAIS Fall Conference
    • /
    • 2011.12b
    • /
    • pp.514-517
    • /
    • 2011
  • 본 연구에서는 사각형태 화장품 케이스 사출성형 시 발생되었던 수지 미성형 불량을 해결하기 위하여 사출성형해석 기술을 통해 성형품 형상변경 및 사출금형 내 유동 시스템 수정방안 도출을 수행하였다. 대상제품인 사각형태 화장품 케이스는 상측부 케이스로서 케이스 외관에 게이트 및 취출흔적이 남지 않아야 함에 따라 측면부 게이트 적용으로 유동거리가 길어져 미성형 불량이 다수 발생하는 제품이다. 따라서, 수지 유동성 향상과 더불어 효율적인 보압전달을 통하여 수지 충전 및 변형발생 저감을 위하여 성형품 형상변화 및 유동시스템 변화에 따른 사출성형해석을 수행하고 결과를 고찰하였다. 이로써 최종적으로 수지 미충전으로 인한 미성형 불량을 제거하고 성형품 변형을 줄일 수 있는 수지유동시스템 수정방안을 제시하였다.

  • PDF

Determined Car Door Latch Injection Molding Process Conditions through the Finite Elements Analysis (유한요소 해석을 통한 차량용 도어 래치 사출성형 공정조건 결정)

  • Lee, Jung-Hyun;Lee, Seon-Bong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.10
    • /
    • pp.499-508
    • /
    • 2016
  • Injection molding is a method for manufacturing many products, wherein a plasticized resin is injected into a mold at high pressure and hardened. According to the method, the product can be manufactured into various forms, and the mass production of up to tens of thousands of products is possible. The purpose of this study was to determine the process conditions for manufacturing a door latch for automobiles, through an analysis of the injection molding method. To calculate an appropriate injection flow for injection molding, a primary analysis for comparing the injection time, pressure, flow pattern, consolidation range, shear stress, shear rate, and weld line, as well as a secondary analysis for determining the conditions for stabilizing the molding temperature, holding pressure, and cooling process, were conducted. The characteristics of injection molding, and their influence on the product quality are discussed. No weld line and pores were observed on the products that had been manufactured based on the process conditions determined above. In addition, there were no flaws regarding the deformation compared to the prototype. Therefore, the manufacture of a product under the conditions determined in this study can reduce the defect rate compared to the existing production, and the process is also more competitive due to reduced production time.

Frontal Flow Field Construction for Wall Boundary Condition Treatment and Frontal Remeshing Using Spline Curve in Injection Molding Simulation (사술성형 모사에 있어서 벽면 경계조건 처리를 위한 선단 유동장 생성기법과 spline 곡선을 이용한 선단 격자 재구성)

  • 윤재륜
    • The Korean Journal of Rheology
    • /
    • v.5 no.1
    • /
    • pp.34-48
    • /
    • 1993
  • 최근 CAD/CAM의 발전과 더불어 사출성형공정은 여러분야에 폭넓게 응용되고 있 다. 사출성형공정은 크게 충전과정(filling stage), 냉각과정(cooling stage), 보압과정(packing stage)로 나누어 지는데 이중 충전과정은냉각과정과 보압과정에서 나타날 물리적인 현상과 최종 성형품의 기계적 성질에 중요한 영향을 끼치게 된다. 충전과정의 수치 해석 방법은 대 표적으로 control volume method, branching flow method, transient moving boun-dary method로 구분된다. 본 연구에서는 격자의 형태를 양호하게 형성시키고 유동선단의 형태를 개선하기위한 기법인 Spline 곡선을 이용한 선단격자 재구성(frontal remeshing using spline curve)과 수치해석에 소요되는 시간을 줄이기 위하여 벽면경계조건 처리를 위한 선단 유동 장생성(frontal flow field construction for wall boun-dary condition treatment)기법을 개발 하고 transient moving voundary method에 적용시켜 원형 평판과 인장 및 굽힘시편 그리고 두께가 변하는 사각 형상을 가진 캐비터에서의 충전과정을 수치해석하였다. 그결과 압력 분 포, 온도분포, 속도장, 유동선단의 진전형태 등이 기존에 제출된 해석결과와 비교하여 볼 때 만족스러운 수치해석결과를 보였다.

  • PDF

A Study on the Design of Cooling Channels of Injection Mould to Manufacture a Flat Part with a Partly Thick Volume (부분적으로 후육부를 가지는 평판형 제품의 제작을 위한 사출성형 금형의 냉각채널 설계에 관한 연구)

  • Ahn, Dong-Gyu;Park, Min-Woo;Kim, Hyung-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.8
    • /
    • pp.824-833
    • /
    • 2012
  • The shrinkage and the warpage of the moulded part are influenced by the design of the product and injection mould. In a flat part with a partly thick volume, the warpage of the flat part is created from the difference of the shrinkage between thin and thick regions. The warpage of the flat part with a partly thick volume can be reduced by a proper design of the cooling system in the injection mould. The goal of this paper is to design properly cooling channels of injection mould to manufacture a flat part with a partly thick volume. The conformal cooling channel is adopted to improve cooling characteristics of a region with the thick volume. The linear cooling channels are assigned to the other region. The proper design of the conformal cooling channels is obtained from three-dimensional injection molding analysis for various design alternatives. The moulding characteristics of the designed mould with both conformal and linear cooling channels are compared to those of the mould with linear cooling channels from viewpoints of temperature, shrinkage and warpage of the moulded part using numerical analysis. Injection mould with both conformal and linear cooling channels for the flat part with a partially thick volume is fabricated. In addition, injection moulding experiments are performed using the fabricated mould. From the results of the injection moulding experiments, it has been shown that the designed mould can successfully fabricate the flat part with a partially thick volume.

Change of Mechanical Properties of Injection-Molded Glass-Fiber-Reinforced Plastic (GFRP) According to Temperature and Water Absorption for Vehicle Weight Reduction (차량 경량화를 위한 사출성형 유리섬유강화플라스틱의 온도 및 수분 흡수에 따른 기계적 물성 변화)

  • Chun, Doo-Man;Ahn, Sung-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.2
    • /
    • pp.199-204
    • /
    • 2013
  • Owing to the global energy crisis, studies have strongly focused on realizing energy savings through vehicle weight reduction using light metal alloys or polymer composites. Polymer composites afford many advantages including enabling the fabrication of complex shapes by injection molding, and glass and carbon fibers offer improved mechanical properties. However, the high temperature in an engine room and the high humidity during the rainy season can degrade the mechanical properties of the polymer. In this study, the mechanical properties of injection-molded glass-fiber-reinforced polymer were assessed at a temperature of $85^{\circ}C$ and the maximum moisture absorption conditions. The result showed a 23% reduction in the maximum tensile strength under high temperature, 30% reduction under maximum moisture absorption, and 70% reduction under both heat and moisture conditions. For material selection during the design process, the effects of high temperature and high humidity should be considered.