• Title/Summary/Keyword: 이종 복합재료

Search Result 169, Processing Time 0.022 seconds

The Characteristics of Acoustic Emission Signal under Composite Destruction on GFRP Gas Cylinder (유리섬유강화 복합재료 가스실린더의 복합재료 파괴시 발생하는 음향방출 특성)

  • Jee, Hyun-Sup;Lee, Jong-O;Ju, No-Hoe;So, Cheal Ho;Lee, Jong-Kyu
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.33 no.5
    • /
    • pp.430-435
    • /
    • 2013
  • This study is investigation of the characteristics for acoustic emission signal generated by destruction on glass fiber bundles and specimen that was machined composite materials surrounding the outside of GFRP cylinder. The Amplitude of acoustic emission signal gets bigger as the cutting angle of knife increases. Accordingly, the number of hits in destruction of composite materials specimen have more in longitudinal direction (longitudinal direction to the glass fiber) than in hoop direction (horizontal direction to the glass fiber) while the amplitude of signals were bigger in hoop direction than longitudinal direction. It was found out that the amplitude of the glass fiber breakage is more than 40 dB and that the amplitude of signal for matrix crack was less than 40 dB because matrix crack signal was not observed when threshold value is 40 dB and matrix crack signal suddenly appered when threshold value is 32 dB. The slope of the amplitude is related to the acoustic emission source and the slope of the amplitude of the horizontal and vertical directions are 0.16 and 0.08. In particular, The slope of the amplitude of longitudinal direction breakage appear similar to the glass fiber breakage and therefore Acoustic emission source of longitudinal direction breakage is estimated the glass fiber breakage.

브레이징 기술(I)

  • 황창규
    • Journal of the KSME
    • /
    • v.25 no.6
    • /
    • pp.491-496
    • /
    • 1985
  • 브레이징(brazing) 이란 접합하고저 하는 모재간의 좁은 간격사이에 모재와는 재질이 다르고 용융점이 낮은 금속 또는 그들의 합금을 용융시켜서 복합재료를 만들어내는 일종의 수단이라고 볼 수 있다. 요즈음 전자분야 등의 여러 곳에서 구조용 재료로 쓰여지고 있는 특수재료나 이종 재료의 접합의 필요성이 증가하고 거기에 접합 수단으로 브레이징법이 응용되고 있다. 브레 이징은 모재, 땜납, 용제(flux)등의 3자로 구성이 되는데 브레이징에서 나타나는 현상은 매우 복 잡하다. 특히 브레이징 접하부의 작업환경은 접합결함과 직결되어 부식이라는 문제를 일으키게 된다. 본고에서는 브레이징 방법, 브레이징용 용제의 종류와 성분, 용제의 작용, 브레이징용 땜납의 현상 그리고 작업환경에 의한 브레이징부의 부식 등을 알아보기로 한다.

  • PDF

Fabrication of Aluminum Nitride Reinforced Aluminum Matrix Composites via Plasma Arc Melting under Nitrogen Atmosphere (플라즈마 아크 용해 공정으로 자발합성된 질화알루미늄 강화 알루미늄기지 복합재료의 개발)

  • Sujin Jeong;Je In Lee;Eun Soo Park
    • Composites Research
    • /
    • v.36 no.2
    • /
    • pp.101-107
    • /
    • 2023
  • In this study, aluminum nitride (AlN) reinforced aluminum (Al) matrix composites are fabricated via plasma arc melting under a nitrogen atmosphere. Within a minute of the chemical reaction between Al and N, dispersed AlN with the shape of transient and lamellar layers is in situ formed in the Al matrix. The composite contains 10 vol.% AlN reinforcements with low thermal resistance and strong bonding at the interfaces, which leads to the unique combination of thermal expansivity and conductivity in the resulting composites. The coefficient of thermal expansion of the composite can be further reduced when Si was alloyed into the Al matrix, which proposes the potential of the in situ Al matrix composites for thermal management applications.

Strengthening Mechanism of Hybrid Short Fiber/Particle Reinforced Metal Matrix Composites (섬유/입자 혼합 금속복합재료의 강화기구 해석)

  • 정성욱;이종해;정창규;송정일;한경섭
    • Composites Research
    • /
    • v.13 no.1
    • /
    • pp.50-60
    • /
    • 2000
  • This paper presents an analytical method considering tensile strength enhancement in hybrid $Al_2O_3$ fiber/particle/aluminum composites(MMCs). The tensile strength and elastic modulus of the hybrid MMCs are even 20% higher than those of the fiber reinforced MMCs with same volume fraction of reinforcements. This phenomenon is explained by the cluster model which is newly proposed in this research, and the strengthening mechanisms by a cluster is analyzed using simple modified rule of mixtures. From the analysis, it is observed that cluster structure in hybrid MMCs increase the fiber efficiency factor for the tensile strength and the orientation factor for the elastic modulus. The present theory is then compared with experimental results which was performed using squeeze infiltrated hybrid MMCs made of hybrid $Al_2O_3$ short fiber/particle preform and AC8A alloy as base metal, and the agreement is found to be satisfactory.

  • PDF

A Parametric Study on the Strength of Single-Lap Bonded Joints of Carbon Composite and Aluminum (탄소 복합재-알루미늄 단일겹침 접착 체결부의 강도에 관한 인자연구)

  • Kim, Tae-Hwan;Seong, Myeong-Su;Choi, Jin-Ho;Kweon, Jin-Hwe
    • Composites Research
    • /
    • v.20 no.5
    • /
    • pp.34-42
    • /
    • 2007
  • Strength and failure of adhesively bonded carbon composite-to-aluminum single-lap joints were studied by experiment. The main objective of this study is to investigate the effect of various parameters such as curing pressure for bonding, overlap lengths, and adherend thickness on the failure loads and modes of the bonded Joints with dissimilar materials. Experimental results show that the bonding pressure for composite-to-aluminum dissimilar materials should be 4 atm at the lowest. Failure load of the joints increases as the overlap length increases, but the strength (failure load divided by bonded area) decreases rapidly after the overlap width-to-length ratio is greater than 1. When the adherend thickness increase to double, bonding strength increase $12{\sim}55%$. Major failure mode of the joints is the delamination in the composite laminate and the location of delamination goes deeper into the laminates as the bonding pressure and overlap length increase.

A Study on Adhesion Characteristics of Co-cured Long Fiber Prepreg Sheet-Aluminum Hybrid Structures (동시 경화 장섬유 복합재료-알루미늄 혼성 구조물의 접착 특성 연구)

  • Lee, Sung-Woo;Chang, Seung-Hwan
    • Composites Research
    • /
    • v.31 no.1
    • /
    • pp.17-22
    • /
    • 2018
  • Long Fiber Prepreg Sheet (LFPS) has the advantages of excellent production efficiency and formability for complex shapes compared to conventional continuous fiber reinforced composites. When fibrous composites are used with different materials, joining method is important because strength of the joining part determines the strength of the hybrid structure. In this study, the adhesive joint strengths of co-cured LFPS and aluminum were evaluated under various surface treatment conditions and environmental conditions (temperature and moisture conditions). Mechanical abrasion and plasma exposure were used for the surface treatment. The adhesive joints experienced various surface treatments were tested by using single lap joint specimens. Adhesive strengths under various conditions were compared and the most appropriate condition was determined.

Optimization of Composite Laminated Plate Using Fuzzy Set Theory (퍼지 이론을 이용한 복합재 적층판의 최적설계)

  • 홍영기;이종호;구만회;우호길
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 1999.11a
    • /
    • pp.63-67
    • /
    • 1999
  • This paper presents the optimization of CFRP laminated rectangular plates using fuzzy theory. In optimization, thickness of CFRP lamina and fiber angle are taken as design variables, and total thickness of the plates is minimized under Tsai-Hill failure criterion. The uncertainties are entered by introducing fuzzy material strengths and then the objective and constraints are represented by a membership function of their own according to the intersection method. Various design results are presented for the CFRP laminated composites plates.

  • PDF

Influence of Stacking Sequence on Carbon Fiber/Aramid Fiber Hybrid Composite (탄소섬유/아라미드섬유 하이브리드 복합재료의 적층 순서의 영향 평가)

  • Hyeonho Lee;Seoyeon Bae;Sungbi Lee;Myoung-Gyu Lee;Wonjin Na
    • Composites Research
    • /
    • v.36 no.6
    • /
    • pp.383-387
    • /
    • 2023
  • Carbon fiber-reinforced composites have excellent mechanical properties. However, the fracture toughness is a disadvantage due to brittle failure mode. The fracture toughness can be enhanced using hybridization with large-elongation fibers. In this study, polyamide (aramid) fibers are hybridized with carbon fiber with various stacking sequences. As a result, the Izod impact strength was enhanced by 63% with 25% aramid fiber hybridization. It is also shown that there is an optimal point in laminated composite hybridization, [CF/CAF2/CF]s stacking sequence.

A Study on the Development of Integrated Folding Composite Wing Using Optimal Design and Multiple Processes (최적설계 및 다중공정을 적용한 일체형 접이식 복합재료 날개 개발 연구)

  • Lee, Jong-Cheon
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.3
    • /
    • pp.70-78
    • /
    • 2018
  • This research was carried out to develop an integrated folding wing made from carbon composite materials. Design requirements were reviewed and composite wing sizing was conducted using design optimization with commercial software. Three composite manufacturing processes including hot-press, pultrusion, and autoclave were evaluated and the most suitable processes for the integrated wing fabrication were selected, with consideration given to performance and cost. The determined manufacturing process was verified by two design development tests for selecting the design concept. Stiffness and strength of the composite wing were estimated through structural analyses. The test loads were calculated and static tests about design limit load and design ultimate load were performed using both wings. As a result, the evaluation criterions of the tests were satisfied and structural safety was verified through the series of structural analyses and testing.