• Title/Summary/Keyword: 이종강 용접

Search Result 83, Processing Time 0.029 seconds

Dissimilar Friction Welding of Engine Exhaustive Valve and High Temperature Creep Prediction and Their Real-Time Evaluation by AE (엔진배기밸브의 내열강 이종재 마찰용접의 최적화와 고온 크리프의 실시간 예측 및 AE에 의한 실시간 평가)

  • Lee, Sang-Guk;Oh, Jung-Hwan;Oh, Sae-Kyoo
    • Journal of Ocean Engineering and Technology
    • /
    • v.13 no.1 s.31
    • /
    • pp.1-10
    • /
    • 1999
  • The engine exhaustive valve became essential as the important element. The dissimmilar welding method of exhaustive valve head to stem was asked for manufacturing the engine exhaustive valve, for which the electric resistance are welding has been conventionally used, resulting in poor quality of the welded joint. In this paper, not only the development of optimizing of friction welding with more reliability and more applicability but also the development of in-process real-time weld qudlity(such as strength and toughness) evaluation technique by acoustic emission for friction welding of the engine exhaustive valve(SUH3-SUH35 dissimilar steels) were perfomed. The high temperature(500, 500, 600$^{circ}$C) creep properties prediction of the friction welded joint of SUH3-SUH35 was investigated relating to the initial strain meethod(ISM) as a new approach, resulting in obtaining an experimental equation of creep life prediction.

  • PDF

Characteristics of Dissimilar CO2 Laser Welding for High Mn Steel and Low Carbon Steel (고Mn강과 저탄소강의 CO2 레이저 이종용접 특성)

  • Jeong, Bo-Young;Han, Tae-Kyo
    • Journal of Welding and Joining
    • /
    • v.28 no.3
    • /
    • pp.36-41
    • /
    • 2010
  • High Mn steel has been developed for automotive applications since the steel has an excellent combination of strength and ductility. However, from the viewpoint of welding, high Mn steel has a few problems related to its chemical composition. This paper describes characteristics of dissimilar $CO_2$ laser welding for expanding application of high Mn steel. From this work it was cleared that dissimilar laser welded joint between high Mn steel and carbon steel had poor formability due to the formation of martensite within weld metal. In order to improve ductility of welded joint, the method of controlling the dilution ratio of high Mn steel was suggested.

A Study for the Improvement of Weld Quality Through Force Control of Servo Gun in Resistance Spot Welding using Robot (저항 점 용접 로봇에서 서보건의 가압력 제어를 통한 용접 강도 향상에 대한 연구)

  • Park, Young-Whan;Lee, Jong-Gu;Rhee, Se-Hun
    • Journal of Welding and Joining
    • /
    • v.24 no.6
    • /
    • pp.13-20
    • /
    • 2006
  • Resistance spot welding is widely used for joining sheet metals in the automotive manufacturing process. Recently, servo-gun is used to increase the productivity and precise control the acting force. However, force control mechanisms have not been investigated with servo-guns until now. In this paper, it is proved that servo-motor current is proportional to torque and by experiment, experimental equation between servo-motor current and electrode force was derived. Algorithm for feedback control of electrode force was suggested using current measurement. In addition, applying soft touch method to this system the impact between electrode and specimen, which is the problem of air gun, could be reduced. Indentation made the force decrease in holding time of resistance spot welding. In order to overcome this problem, force compensation using the servo gun was used and it improved weld strength in good welding current range.

Dissimilar Metal Welding of Nd:YAG Laser of Austenitic Stainless Steel and Medium Carbon Steel (중탄소강과 오스테나이트계 스테인레스강의 Nd:YAG 레이저의이종금속 용접)

  • Shin H.J.;Yoo Y.T.;Ahn D.G.;Im K.;Shin B.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1560-1565
    • /
    • 2005
  • Laser beam welding is increasingly being used in welding of structural steels. The laser welding process is one of the most advanced manufacturing technologies owing to its high speed and deep penetration. The thermal cycles associated with laser welding are generally much faster than those involved in conventional arc welding processes, leading to a rather small weld zone. Experiments are performed for 304 stainless steel plates changing several process parameters such as laser power, welding speed, shielding gas flow rate, presence of surface pollution, with fixed or variable gap and misalignment between the similar and dissimilar plates, etc. The following conclusions can be drawn that laser power and welding speed have a pronounced effect on size and shape of the fusion zone. Increase in welding speed resulted in an increase in weld depth/ aspect ratio and hence a decrease in the fusion zone size. The penetration depth increased with the increase in laser power.

  • PDF

Dissimilar Metal Welding of Medium Carbon Steel and Austenitic Stainless Steel utilize CW Nd:YAG Laser (CW Nd:YAG 레이저를 이용한 중탄소강과 오스테나이트계 스테인레스강의 이종금속 용접)

  • Shin Ho-Jun;Ahn Dong-Gu;Im Kie-Gon;Shin Byung-Heon;Yoo Young-Tae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.3 s.180
    • /
    • pp.47-55
    • /
    • 2006
  • Laser welding of dissimilar metals has been widely used to improve a wear resistance and a corrosion resistance of the industrial parts. The objective of this research is to investigate the influence of the process parameters, such as the welding for SM45C and STS304 with CW Nd:YAG lasers. The bead-on-plate welding tests are carried out for several combinations of the experimental conditions. In order to quantitatively examine the characteristics of the dissimilar welding, the welding quality of the cut section, stress-strain behavior and the hardness of the welded metal are investigated. From the results of the investigation, it has been shown that the optimal voiding condition without defects in the vicinity of the welded area and with a good welding quality is 1600W of the laser power, 0.85m/min of welding speed and $4{\ell}/min$ of pressure for shielding gas.

Corrosion-Resistant High Strength S20C Element Riveted Al5052-SPFC980Y Steel Joints by Resistance Element Spot Welding (S20C 리벳된 Al5052와 SPFC980Y 강철 resistance-element 점용접 접합부의 미세조직 발달 및 고강도-부식 저항 특성)

  • Baek, Seung-Yeop;Song, Jong-Ho;Park, Seung-Youn;Song, Il-Jong;Lee, Hyun-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.2
    • /
    • pp.794-801
    • /
    • 2021
  • This study examined the mechanical strength and corrosion resistance of a dissimilar joint with an aluminum alloy and steel by resistance element spot welding. SPFC980 steels and Al5052 alloys were applied as the base materials. S20C steels were assembled on Al5052 for the riveting element before the electric resistance welding process. The SPFC980-S20C riveted Al5052 was welded at a 6.5 kA current and 250 kgf/㎠. As a result, the engraved S20C elements formed unstable nuggets after the spot welding processes. In contrast, in the embossed S20C elements, exceptional mechanical properties, such as robust corrosion resistance and fatigue resistance, were obtained by structurally sound joints. The correlation between the microstructure and mechanical properties were examined by microstructural investigations and FEM simulations. The corrosion reliability of element spot-welded SPFC980-Al5052 dissimilar joints was investigated systematically.

Evaluation of tensile strength according to welding variables in GMA welding of SAPH440 (SAPH440재료의 GMA용접시 용접변수에 따른 인장 강도 특성 평가)

  • Kim, Won-Seop;Lee, Jong-Hun;LeeSeo, Han-Seop;Park, Sang-Heup
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.8
    • /
    • pp.133-138
    • /
    • 2019
  • This study evaluated the tensile properties of SAPH440, a hot-rolled steel for automotive structural applications, based on GMAW lap welding, the welding current, the welding voltage, and the feed rate. Tensile tests were performed according to the joint parameters of the GMAW process, for which specimens were fabricated according to KS B ISO 9018 by lap welding. The bead appearance was observed in each condition, and the weldability was evaluated by the tensile test. Higher the welding current resulted in a deeper weld, but the tensile strength was not significantly different from when the parameter was fixed due to the fracture of the base material. When the current was higher than the voltage, as in the case of a welding current of 200 A and welding voltage of 17 V, a large amount of spatter is generated, the welding is unstable, and the welded part breaks. Higher the voltage resulted in the bead not causing defects in general, and it also affected the weldability. If the current and voltage were too low, the welding was not performed normally, and the tensile strength could not be measured. However, as the current increased, the increase of the voltage and the feed rate did not affect the tensile strength.

SPRC 강판의 표면전처리 공정에 따른 에폭시 접착부 특성 평가

  • Kim, Hae-Yeon;Kim, Min-Su;Kim, Jong-Hun;Kim, Mok-Sun;Kim, Jun-Gi
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.56.2-56.2
    • /
    • 2011
  • 최근 철강, 알루미늄, 이종재료의 접합 등 용접이 어려운 부분에 구조용 접착제의 적용이 증가하고 있는 추세이다. 이를 위해 변성 에폭시레진을 활용한 고접합 강도, 고인성의 구조용 접착제가 연구되어 지고 있다. 피착제의 표면처리는 접합부의 접합강도를 향상시키는 방법으로 알려져 있으나 최근의 구조용 접착제는 표면 전처리 없이도 우수한 접착 특성을 보이는 것으로 기대되고 있다. 본 연구에서는 변성레진에 대해서 각종 표면처리가 접합부 특성에 미치는 영향을 조사하였다. 피착제로는 자동차용 냉연강판인 SPRC440을 사용하였고, 전처리로는 무처리 상태, SiC연마지를 이용한 연마, 아르곤 및 산소가스를 이용한 마이크로웨이브 플라즈마 표면처리, 산세 등의 표면처리를 실시하였다. 에폭시 접착제는 변성 에폭시 레진과 경화제 및 촉매제를 이용하여 직접 포뮬레이션하였다. 단일 겹치기 전단강도 시험과 T-Peel 시험은 각각 ASTM D 1002 규격에 따라 준비하였으며 인장 시험 후 파면은 SEM으로 관찰하였다.

  • PDF

A Study on Fracture Property of Adhesive Interface at Tapered Double Cantilever Beam with Inhomogeneous Composite Material due to Loading Conditions of In-plane and Out-plane (면내 및 면외 하중 조건들에 따른 이종 복합 소재를 가진 경사진 이중외팔보에서의 접착계면의 파괴 특성 연구)

  • Lee, Jung-Ho;Kim, Jae-Won;Cheon, Seong-Sik;Cho, Jae-Ung
    • Composites Research
    • /
    • v.33 no.6
    • /
    • pp.401-407
    • /
    • 2020
  • At the engineering and industrial areas, the lightweight composite material has been substituted with the metals, such as steel at the structural parts. This composite material has been applied by the adhesive bonding method, as well as the joint methods with rivets, welds or bolts and nuts. The study on the strength characteristics of adhesive interface is necessarily required in order to apply the method to composite materials. CFRP specimens as the fiber reinforced plastic composites were manufactured easily and this study was carried out. The static experiments were performed under the loading conditions of in-plane and out-plane shears with the inhomogeneous composite TDCB specimens with CFRP, aluminum (Al6061), and aluminum foam (Al-foam). Through the result of this study, the durability on the inhomogeneous composite structure with adhesive interface was investigated by examining the fracture characteristic and the point in time.

Evaluation of Resistance Spot Weldability of SGAFC1180 Steel (SGAFC1180 TRIP강재의 저항 점용접성 평가)

  • Shin, Seok-Woo;Lee, Jong-Hun;Kim, Dae-Hwan;Park, Sang-Heup
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.12
    • /
    • pp.644-649
    • /
    • 2017
  • In the automobile industry, there is growing demand for lightweight vehicles due to environmental problems and rising oil prices. Therefore, aluminum alloys and special materials are being used to reduce the weight of vehicles, but there are still many difficulties to overcome in terms of cost and strength. Therefore, the application of advanced high strength steel (AHSS)is increasing. AHSS has good strength and formability.Safety regulations are becoming stricter, and 1.2-GPa super-high-strength steels are gradually being applied for the center pillar and roof rails. Thus, the application of different kinds of steels in automobile bodiesis also increasing gradually. This study evaluates the resistance point weldability and the characteristics of a welded part of SGAFC1180 1.2t steel. A simulation was used to observe the nugget formation and its growth behavior. The prediction performance showed a similar tendency within an error rate of 10%. Also, the effect of this behavior on the process resistance and dynamic resistance was investigated,along with the correlation between the shear tensile strength and nugget diameter.