• Title/Summary/Keyword: 이족 보행 로봇

Search Result 115, Processing Time 0.025 seconds

Development of Human-Sized Biped Robot (인체형 이족 보행로봇의 개발)

  • 최형식;박용헌;이호식;김영식
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.267-267
    • /
    • 2000
  • We developed a human-sized BWR(biped walking robot) driven by a new actuator based on the ball screw which has high strength and high gear ratio. The robot overcomes the limit of the driving torque of conventional BWRs. Each leg of the robot is composed of three pitch joints and one roll joint. In all, a 10 degree-of-freedom robot with two balancing joints was developed. The BWR was developed to walk autonomously such that it is actuated by small torque motors and is boarded with DC battery and controllers. In the performance test, the BWR peformed nice motions of sitting-up and sitting-down. Through the test, we could find capability of high performance in biped-walking.

  • PDF

Stability Analysis of a Biped Robot using Wrench System (렌치 시스템을 이용한 이족보행 로봇의 안정도 해석)

  • 임헌영;심재경;황규혁
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.648-651
    • /
    • 2004
  • Biped robot has better mobility than other mobile robot, but it is hard to maintain balance during walking. In order to maintain balance, stability analysis is a key point for a biped robot. The zero moment point analysis has been used most in stability analysis. In this paper, we propose different method of stability analysis using wrench system. It is possible to generate a wrench system by applying a force along an axis in space and simultaneously applying a moment about the same axis. Wrench system is equivalent to a force and moment applied along the same axis. We compare the result of wrench system analysis with that of zero moment analysis in biped robot stability using simulation program.

  • PDF

3D Simulation Study of Biped Robot Balance Using FPE Method (FPE 방식을 활용한 이족 로봇 균형 유지 3차원 시뮬레이션 연구)

  • Jang, Tae-ho;Kim, Youngshik;Ryu, Bong-Jo
    • Journal of Digital Contents Society
    • /
    • v.19 no.4
    • /
    • pp.815-819
    • /
    • 2018
  • In this study, we investigate balance of a biped robot applying Foot Placement Estimator (FPE) in simulation. FPE method is used to determine a stable foot location for balancing the biped robot when an initial orientation of the robot body is statically unstable. In this case, the 6-DOF biped robot with point foot is modelled considering contact and friction between foot and the ground. For simulation, the mass of the robot is 1 kg assuming the center of robot mass (COM) is located at the center of the robot body. The height from the ground to the COM is 1 m. Robot balance is achieved applying stable foot locations calculated from FPE method using linear and angular velocities, and the height of the COM. The initially unstable angular postures, $5^{\circ}$ and $-5^{\circ}$, of the robot body are simulated. Simulation results confirm that the FPE method provides stable balance of the robot for all given unstable initial conditions.

Analysis of Gait Characteristics of Walking in Various Emotion Status (다양한 감정 상태에서의 보행 특징 분석)

  • Dang, Van Chien;Tran, Trung Tin;Kim, Jong-Wook
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.5
    • /
    • pp.477-481
    • /
    • 2014
  • Human has various types of emotions which affect speculation, judgement, activity, and the like at the moment. Specifically, walking is also affected by emotions, because one's emotion status can be easily inferred by his or her walking style. The present research on biped walking with humanoid robots is mainly focused on stable walking irrespective of ground condition. For effective human-robot interaction, however, walking pattern needs to be changed depending on the emotion status of the robot. This paper provides analysis and comparison of gait experiment data for the men and women in four representative emotion states, i.e., joy, sorrow, ease, and anger, which was acquired by a gait analysis system. The data and analysis results provided in this paper will be referenced to emotional biped walking of a humanoid robot.

The Intelligent Control System for Biped Robot Using Hierarchical Mixture of Experts (계층적 모듈라 신경망을 이용한 이동로봇 지능제어기)

  • Choi Woo-Kyung;Ha Sang-Hyung;Kim Seong-Joo;Kim Yong-Taek;Jeon Hong-Tae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.4
    • /
    • pp.389-395
    • /
    • 2006
  • This paper proposes the controller for biped robot using intelligent control algorithm. In order to simplify the complexity of biped robot control, manipulator of biped robot is divided into four modules. These modules are controlled by intelligent algorithm with Hierarchical Mixture of Experts(HME) using neural network. Also neural network having direct control method learns the inverse dynamics of biped robot. The HME, which is a network of tree structure, reallocates the input domain for the output by learning pattern of input and output. In this paper, as a result of learning HME repeatedly with EM algorithm, the controller for biped robot operating safety walking is designed by modelling dynamics of biped robot and generating virtual error of HME.

생체 모방 로봇의 기술개발 동향

  • Yun, Byeong-Ho;Kim, Yeong-Guk;Kim, Su-Hyeon
    • ICROS
    • /
    • v.18 no.1
    • /
    • pp.26-30
    • /
    • 2012
  • 생체 모방 로봇은 생명체에서 영감을 얻어 새로운 로봇분야를 개척하고 기존의 로봇으로는 하기 힘들었던 한계점들을 극복하는데 목적이 있다. 이러한 생체 모방 로봇은 간단한 생물체의 형태 혹은 메커니즘의 모방으로부터 시작되어 바퀴가 갈 수 없었던 험지, 혹은 하수구, 좁은 통로에서 사용될 수 있는 로봇들을 개발하는 데 초점이 맞추어져 있었다. 이러한 로봇들의 예로써는 크게 이족 보행, 4족 보행, 다족 보행 로봇 등 생물체의 이동 메커니즘을 모방한 로봇들이 있다. 이러한 연구들은 기존 로봇에 사용되었던 재료, 제작 방법을 이용한 것이었다. 하지만 최근 생체 모방 로봇 기술은 새로운 접근 방법, 새로운 재료를 이용한 제작방법으로 기존의 로봇과는 다른 형태로 진화하고 있다. 이러한 기술은 경량화 기술, 초 소형화 기술, 3차원 프린팅 기술 그리고 소프트 물질을 이용한 제작 방법 등이 있다.

A Learning Controller for Repetitive Gate Control of Biped Walking Robot (이족 보행 로봇의 반복 걸음새 제어를 위한 학습 제어기)

  • 임동철;국태용
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.538-538
    • /
    • 2000
  • This paper presents a learning controller for repetitive gate control of biped robot. The learning control scheme consists of a feedforward learning rule and linear feedback control input for stabilization of learning system. The feasibility of teaming control to biped robotic motion is shown via dynamic simulation with 12 dof biped robot.

  • PDF

Automatic Motion Generator and Simulator for Biped Walking Robots (이족 보행 로봇을 위한 자동 모션 제너레이터 및 시뮬레이터)

  • 최형식;전창훈;오주환
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.948-953
    • /
    • 2004
  • For stable walking of various biped walking robots(BWR), we need to know the kinematics, dynamics and the Zero Moment of Point(ZMP) which are not easy to analyze analytically. In this reason, we developed a simulation program for BWRs composed of 4 degree-of-freedom upper-part body and 12 degree-of-freedom lower-part of the body. To operate the motion simulator for analyzing the kinematics and dynamics of BWES, inputs for the distance between legs, base angle, choice of walking type, gaits, and walking velocity are necessary. As a result, if stability condition is satisfied by the simulation, angle data for each actuator are generated automatically, and the data are transmitted to BWRS and then, they are actuated by the motion data. Finally, we validate the performance of the proposed motion simulator by applying it to a constructed small sized BWR.

  • PDF

Tracking Control for Biped Robot (이족 보행 로봇을 위한 추적 제어)

  • 이용권;박종현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.315-318
    • /
    • 1995
  • In this paper, an optimal trunk trajectory for stable walking of biped robots is expressed as a simple differential equation, which is then solved by numerical methods. We used ZMP (Zero Moment Point), the virtual total ground reaction point within the region of the supporting food, as the criterion of stability of biped robot walking. If the ZMP is located outside of the stable region in dynamic walking, biped robots fall down. The biped robot considered in this paper consists of two legs and a trunk. The trajectories of the two legs and the ZMP of the biped robot are determined such that they are similar ti those of a human. Based upon those trajectories, the trunk trajectory is solved by numerically integrating differential dynamic equations. Leg motions are controlled by the computed torque control method. The effectiveness of control algorithm as well as the trajectories is confirmed by computer simulations.

  • PDF