• Title/Summary/Keyword: 이족 로봇

Search Result 141, Processing Time 0.029 seconds

Development the Humanoid Biped Robot and Path Finding (휴머노이드 타입의 이족 보행 로봇 제작과 Path-Finding에 관한 연구)

  • Kim, Jung-Kee;Shen, Yun-De;Kee, Chang-Doo
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.447-449
    • /
    • 2004
  • We proposed the method of the production of the humanoid biped robot and apply the A* path finding algorithm, for that robot mainly used in game and mobile robot, to avoid obstacles at real time. Actually we made the robot which has 20 DOF, 12 DOF in the two legs, 6 DOF in the two arms and each 1 DOF in the neck and waist, to realize human motions with minimal DOF, And we use the CATIA V5 for 3D modeling design and simulate.

  • PDF

Walking Pattern Generation for a Biped Robot Using Polynomial Approximation (다항식 근사를 이용한 이족보행 로봇의 보행패턴 생성)

  • Kang, Yun-Seok;Park, Jung-Hun;Yim, Hong-Jae
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.567-572
    • /
    • 2004
  • In this research, a stable walking pattern generation method for a biped robot is presented. A biped robot is considered as constrained multibody system by several kinematic joints. The proposed method is based on the optimized polynomial approximation of the trunk motion along the moving direction. Foot motions can be designed according to the ground condition and walking speed. To minimize the deviation from the desired ZMP, the trunk motion is generated by the fifth order polynomial approximation. Walking simulation for a virtual biped robot is performed to demonstrate the effectiveness and validity of the proposed method. The method can be applied to the biped robot for stable walking pattern generation.

  • PDF

Automatic Motion Generator and Simulator for Biped Walking Robots (이족 보행 로봇을 위한 자동 모션 제너레이터 및 시뮬레이터)

  • 최형식;전창훈;오주환
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.948-953
    • /
    • 2004
  • For stable walking of various biped walking robots(BWR), we need to know the kinematics, dynamics and the Zero Moment of Point(ZMP) which are not easy to analyze analytically. In this reason, we developed a simulation program for BWRs composed of 4 degree-of-freedom upper-part body and 12 degree-of-freedom lower-part of the body. To operate the motion simulator for analyzing the kinematics and dynamics of BWES, inputs for the distance between legs, base angle, choice of walking type, gaits, and walking velocity are necessary. As a result, if stability condition is satisfied by the simulation, angle data for each actuator are generated automatically, and the data are transmitted to BWRS and then, they are actuated by the motion data. Finally, we validate the performance of the proposed motion simulator by applying it to a constructed small sized BWR.

  • PDF

Stability Analysis of a Biped Robot using Wrench System (렌치 시스템을 이용한 이족보행 로봇의 안정도 해석)

  • 임헌영;심재경;황규혁
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.648-651
    • /
    • 2004
  • Biped robot has better mobility than other mobile robot, but it is hard to maintain balance during walking. In order to maintain balance, stability analysis is a key point for a biped robot. The zero moment point analysis has been used most in stability analysis. In this paper, we propose different method of stability analysis using wrench system. It is possible to generate a wrench system by applying a force along an axis in space and simultaneously applying a moment about the same axis. Wrench system is equivalent to a force and moment applied along the same axis. We compare the result of wrench system analysis with that of zero moment analysis in biped robot stability using simulation program.

  • PDF

Tracking Control for Biped Robot (이족 보행 로봇을 위한 추적 제어)

  • 이용권;박종현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.315-318
    • /
    • 1995
  • In this paper, an optimal trunk trajectory for stable walking of biped robots is expressed as a simple differential equation, which is then solved by numerical methods. We used ZMP (Zero Moment Point), the virtual total ground reaction point within the region of the supporting food, as the criterion of stability of biped robot walking. If the ZMP is located outside of the stable region in dynamic walking, biped robots fall down. The biped robot considered in this paper consists of two legs and a trunk. The trajectories of the two legs and the ZMP of the biped robot are determined such that they are similar ti those of a human. Based upon those trajectories, the trunk trajectory is solved by numerically integrating differential dynamic equations. Leg motions are controlled by the computed torque control method. The effectiveness of control algorithm as well as the trajectories is confirmed by computer simulations.

  • PDF

Development of Human-Sized Biped Robot (인체형 이족 보행로봇의 개발)

  • 최형식;박용헌;이호식;김영식
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.15-18
    • /
    • 2000
  • We developed a human-sized BWR(biped walking robot) driven by a new actuator based on the ball screw which has high strength and high gear ratio. The robot overcomes the limit of the driving torque of conventional BWRs. Each leg of the robot is composed of three pitch joints and one roll joint. In all, a 10 degree-of-freedom robot with two balancing joints was developed. The BWR was developed to walk autonomously such that it is actuated by small torque motors and is boarded with DC battery and controllers. In the performance test, the BWR performed nice motions of sitting-up and sitting-down. Through the test, we could find capability of high performance in biped-walking.

  • PDF

Development of Autonomous Biped Walking Robot (자립형 이족 보행 로봇의 개발)

  • Kim, Y.S.;Oh, J.M.;Baik, C.Y.;Woo, J.J.;Choi, H.S.
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.805-809
    • /
    • 2003
  • We developed a human-sized BWR(biped walking robot) named KUBIR1 driven by a new actuator based on the ball screw which has high strength and high gear ratio. KUBIR1 was developed to walk autonomously such that it is actuated by small torque motors and is boarded with DC battery and controllers. To utilize the information on the human walking motion and to analyze the walking mode of robot, a motion capture system was developed. The system is composed of the mechanical and electronic devices to obtain the joint angle data. By using the obtained data, a 3-D graphic interface was developed based on the OpenGL tool. Through the graphic interface, the control input of KUBIR1 is performed.

  • PDF

Stability Analysis of a Biped Robot using FRI (FRI를 이용한 이족 보행 로봇의 안정도 해석)

  • 김상범;최상호;김종태;박인규;김진걸
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.574-577
    • /
    • 2001
  • This paper presents the comparison of FRI(Foot Rotation Indicator) point and ZMP(Zero Moment Point) in biped robot stability. We showed FRI may be employed as a useful tool in stability analysis in biped robot. Also, we proposed the balancing joint trajectory derived from FRI point equation for stable gait. The numerical calculation routines and walking algorithms for simulation are performed by MATLAB. The procedure is composed of the leg trajectory planning, the generation of balancing trajectory, and the verification of dynamic stability.

  • PDF

Development of Human-Sized Biped Robot of improvement in model (이족 보행로봇 개선모델의 개발)

  • 최형식;박용헌;정경식
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.458-461
    • /
    • 1997
  • We have developed a human-sized BWR(biped walking robot) driven by a new actuator based on the ball screw which has high strength and high gar ratio. Each leg of the robot is composed of three pitch joints and one roll joint. In all, a 10 degree-of-freedom robot with two balancing joints was developed. For the purpose of autonomous walking and higher performance, we improved the previous developed BWR. We improved the motor drive efficiency, designed the ball screw actuator in a modular type, and simplified the electric wires. Through this modification, we achieved better performance in walking.

  • PDF