• 제목/요약/키워드: 이젝터 냉동사이클

검색결과 5건 처리시간 0.015초

증기-액 이젝터를 적용한 R134a 냉동사이클의 성능 비교 (Performance comparison of refrigeration cycle using R134a with the vapor-liquid ejector)

  • 윤정인;김청래;손창효
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제39권9호
    • /
    • pp.890-894
    • /
    • 2015
  • 최근 기본 냉동사이클에 이젝터를 적용한 고효율 냉동사이클의 개발에 대한 연구가 활발히 진행 중이다. 이러한 이젝터는 그 적용 위치에 따라 이젝터의 역할 뿐만 아니라 냉동사이클의 성능도 달라진다. 따라서 본 연구에서는 이젝터 적용 위치가 다른 세 가지 냉동사이클을 선정하고, 각 사이클의 성능을 비교 및 분석하였다. 그 결과, 모든 이젝터 적용 냉동사이클의 COP가 기본 냉동사이클에 비해 최대 44% 향상되었다. 특히 본 연구에서 제안하는 이젝터 냉동사이클의 COP가 3.47로 가장 높게 나타났다. 그리고, 기본 냉동사이클과 비교하여 Bergander 사이클, Xing 사이클, 그리고 본 연구에서 제안한 이젝터 냉동사이클의 응축열량이 최대 21% 감소하였다. 따라서, 본 연구로부터 이젝터 적용 냉동사이클에서 이젝터의 압력비, 토출부 건도, 압축비 등은 냉동장치의 성능 향상에 영향을 미치는 중요한 요소이므로 이들에 대한 최적 제어가 대단히 중요하다.

2상류이젝터를 이용하는 $CO_{2}$ 냉동사이클의 성능해석 (Performance analysis of $CO_{2}$ refrigeration cycle with two-phase ejector)

  • 이윤환
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제29권8호
    • /
    • pp.946-952
    • /
    • 2005
  • The $CO_{2}$ refrigeration cycle is expected to reduce the compressor work and increase the COP by applying two-phase ejector as a device for the recovery of dissipated expansion energy. In this study, the performance of the cycle was simulated and effects of the ejector shapes on the performance of the $CO_{2}$ refrigeration cycle were investigated. The following results were obtained through the cycle simulation. The COP of the $CO_{2}$ refrigeration cycle with two-phase ejector flow which expansion is occured in the isentropic manner is increased by a maximum of 24 $\%$ than the basic cycle with expansion valve If the velocity nonequilibrium in the mixing process is assumed the COP of the cycle is increased with the increase of the length and the decrease of the section area of the mixing tube. The best cycle performance is obtained when the divergent angle of diffuser is 7.

R1234yf와 R134a 냉매의 이젝터를 적용한 냉동사이클 성능에 대한 해석적 연구 (A Numerical Study on the Performance of a Vapor Compression Cycle Equipped with an Ejector Using Refrigerants R1234yf and R134a)

  • 조홍현;박차식
    • 설비공학논문집
    • /
    • 제27권7호
    • /
    • pp.362-368
    • /
    • 2015
  • This paper presents a numerical study on the performance of a vapor compression cycle equipped with an ejector as an expansion device to improve the COP by reducing the expansion loss and compressor work. The simulation is carried out using a model based on the conservation of mass, energy and momentum in the ejector. From the results of the simulation, the vapor compression cycle equipped with an ejector showed a maximum COP improvement of 14.0% when using R134a refrigerant and 16.8% when using R1234yf. In addition, the performance of the system with an ejector represents the increased performance as the temperature difference between condensing and evaporating increased.

이젝터를 적용한 이산화탄소 냉동사이클의 내부열교환기 길이에 따른 성능 변화 (Performance Variation with Length of Internal Heat Exchanger in CO2 Cooling Cycle Using an Ejector)

  • 강변;조홍현
    • 설비공학논문집
    • /
    • 제24권2호
    • /
    • pp.147-154
    • /
    • 2012
  • Recently, many researchers have studied the performance of the transcritical $CO_2$ refrigeration cycle in order to improve the system efficiency. In this study, the length of IHX in the $CO_2$ ejector cycle was varied so as to evaluate the performance improvement. As a result, compressor work and cooling capacity was increased by 3% and 5% as the length of internal heat exchanger was changed from 3 m to 15 m. The best COP was appeared at internal heat exchanger length of 12 m, and it was 3.01. Besides, the length of internal heat exchanger has a big effect to pressure lift ratio and entrainment ratio in the ejector $CO_2$ cycle and it may be changed with operating conditions and system specifications.

이젝터를 적용한 냉동사이클의 냉매종류별 성능특성 (Performance Characteristics of Refrigeration Cycles with Ejector using Refrigerants)

  • 윤정인;김청래;손창효
    • 동력기계공학회지
    • /
    • 제21권1호
    • /
    • pp.24-29
    • /
    • 2017
  • Studies in liquid-vapor ejector, which performs a great efficiency in refrigeration cycle is highly concerned. This paper is based on basic refrigeration cycle and three ejector refrigeration cycles and the comparison and contrasts about when 6 different refrigerants are applied to such refrigeration cycles. All cycles had a percentage increase of COP from 4 to 74% when ejector was applied, and the source of increasement was the decrease of total work done due to ejector's pressure recovery function. When R-245fa is applied to cycle (d), results showed that COP was the most superior in such cycle, R-245fa showed high volume entrainment ratio in all cycles. Future studies in refrigeration cycles will require more knowledge and experiments on ejector's appliance to refrigeration cycles and the actuation of such functions.