• Title/Summary/Keyword: 이음부 강성

Search Result 60, Processing Time 0.02 seconds

Influence of the joint stiffness on the segment design (이음부 강성계수가 세그먼트 설계에 미치는 영향)

  • Choi, Woo-Yong;Park, Jong-Deok;Lee, Seok-Won
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.16 no.1
    • /
    • pp.63-74
    • /
    • 2014
  • The lining of shield TBM tunnel is composed of segments, therefore segment joints are induced by connecting each segment. Segment joint is considered as joint stiffness in the design of TBM tunnel. Depending on the choice among the different stiffness equations, the joint stiffness values determined can be varied largely. Therefore, the influence of joint stiffness value on the design of segment lining should be verified. In this study, the joint stiffness values were determined firstly by using various equations and total change boundary was justified. Within the change boundary determined, the member forces were calculated by changing the joint stiffness through the numerical analysis and consequently the stability of segment lining was investigated by applying nominal strength. The results showed that the segment joint stiffness did not affect the design of segment lining largely.

Evaluation of the Bending Performance of a Modified Steel Grid Composite Deck Joint (격자형 강합성 바닥판의 수정된 이음부에 대한 휨성능 평가)

  • Shin, Hyun-Seop;Park, Ki-Tae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.4
    • /
    • pp.38-47
    • /
    • 2013
  • For the joint connection of the precast steel grid composite decks, the prefabricated joint which is composed of concrete shear key and high-tension bolts was already proposed. In this study, for the purpose of increasing the bending stiffness and bending strength of the proposed prefabricated joint section details of the proposed joint are modified, and through experimental tests the bending performance, such as stiffness and strength of a modified joint, is compared with those of the proposed joint. Test and analysis results show that the shear cracks in the concrete shear key are clearly reduced by the strengthening of the shear key using shear studs and additional rebars. According to analysis results of the moment-curvature relationship, bending stiffness of the modified joint is about 47% greater than the stiffness of the proposed joint. Furthermore, the modified joint has about 32% greater bending strength than the proposed joint. Compared to specimens without the joint the modified joint has same or slightly higher bending strength, but about 37% lower bending stiffness.

Analysis and structural behavior of shield tunnel lining segment (쉴드터널 라이닝 세그멘트의 해석과 거동 특성)

  • Jung, Du-Hwoe;Lee, Hwan-Woo;Kim, Gwan-Soo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.9 no.1
    • /
    • pp.37-47
    • /
    • 2007
  • The shield tunneling method has been increasingly employed to minimize environmental damages and civil complaints in the populated and developed area. A lining segment, which is a main structure of the shield tunnel, consists of joints. Conventional foreign and domestic design data have been commonly used for design practices without a specific verification of structural analysis models, design load, and the effect of soil characteristics on the performance of lining segment. In this study, the suitability of existing analytic models used for the design of shield tunnel lining segment has been evaluated through a comparison between analytical and numerical solutions. Based on the evaluation of their suitability performed in the study, a full-circumferential beam jointed spring model (1R-S0) is proposed for design practices by considering user's convenience, the applicability of field conditions and the accuracy of analysis result. By using the proposed model, the parameter analysis was performed to investigate the effects of joint stiffness, ground rigidity, joint distribution and the number of joints on the behavior of lining segment. Parameters considered in the investigation have been appeared to affect the behavior of lining segment. Among those parameters, joint stiffness has been appeared to have the most significant effect on the bending moment and displacement of lining segment.

  • PDF

An approach for moment-rotation relationship and bearing strength of segment lining's joint (세그먼트 라이닝 이음부의 모멘트-회전 관계와 지압강도 계산)

  • Lee, Young Joon;Chung, Jee Seung
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.2
    • /
    • pp.93-106
    • /
    • 2021
  • In general, segment lining tunnel refers to a tunnel formed by connecting precast concrete segments as a ring and connecting such rings to each other in the longitudinal direction of the tunnel. As the structural properties of the segment lining is highly dependent on the behavior of the segment joints, thus correct modelling of joint behavior is crucial to understand and design the segment tunnel lining. When the tunnel is subjected to ground loads, the segment joint behaves like a hinge that resists rotation, and when the induced moment exceeds a certain limit of the rotation then it may enter into non-linear field. In understanding the effect of the segment joint on the lining behavior, a moment-rotation relationship of the segment joint was explored based on the Japanese practice and Janssen's approach commonly used in the actual design. This study also presents a method to determine the rotational stiffness of joint refer to the bearing strength. The rotation of the segment joint was estimated in virtual design conditions based on the existing models and the proposed method. And the sectional force of the segment lining and joint were calculated along with the estimated rotation. As the rotation at the segment joint increases, the joint contact area decreases, so the designer have to verify the segment joint for bearing strength as well. This paper suggests a consistent method to determine the rotational stiffness and bearing strength of joints.

An Experimental Study on Bending Behaviour of Steel Grid Composite Deck Joint (격자형 강합성 바닥판 이음부의 휨거동에 관한 실험적 연구)

  • Shin, Hyun Seop;Lee, Chin Hyung;Park, Ki Tae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.5
    • /
    • pp.68-77
    • /
    • 2012
  • The joint of existing steel grid composite deck is composed of lap splice of reinforcing bar with end hooks and field-placed concrete. In this study, bending tests of deck joint composed of concrete shear key and high tension bolts are carried out for the design variable, concrete shear key strengthened with steel plate or not, and test results are compared with flexural performance of the existing deck joint. Test results showed that the mechanical deck joint has about 30% ~ 60% more ultimate bending strength than the existing joint. According to analysis results of moment-curvature relationship, the initial bending stiffness of the existing deck joint is some higher than that of mechanical joint. But, after crack failure the structural performance of the existing deck joint is rapidly reduced. Furthermore, the deck joint with the strengthened shear key with steel plate has more bending moment capacity than the deck joint without strengthening. And strengthening of shear key has positive influence on the increase of bending stiffness.

A Study on the Characteristics of Fatigue Failure for Fillet Welded Joint (필릿 용접이음부의 피로파괴 특성에 관한 연구)

  • Kang, S.W.;Ha, W.I.;Shin, J.S.;Jang, T.W.;Jae, J.S.
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.33 no.4
    • /
    • pp.133-141
    • /
    • 1996
  • The mode of fatigue failure is depended on the characteristics of the fatigue crack initiated and propagated from the weld toe and the weld root in the load-carrying fillet welded joints. The characteristics of fatigue crack are deeply affected by the geometry of fillet and the stress range. The purpose of this study is to investigate critical weld size and stress range in order to occur toe failure under pulsating tension loading in the load-carrying fillet welded cruciform joints.

  • PDF

Experimental Study of the End-plate Gap Effect on the Performance of Extended End-plate Type Splice (이음면 이격이 확장형 단부판 이음부 성능에 미치는 영향에 대한 실험적 연구)

  • Kim, Cheol Hwan;Lee, Myung Jae;Kim, Hee Dong;Kim, Sa Bin
    • Journal of Korean Society of Steel Construction
    • /
    • v.28 no.6
    • /
    • pp.427-438
    • /
    • 2016
  • This study is experimental research for the effect of gap at the end plate on the performance of extended end-plate type splice. For this research, simple beam type specimens by using extended end-plate type splice are planned. Main variables are the initial gap between end-plates, the installation of finger shim plate before the installation of high tension bolts, the final gap between end-plates, and the installation of finger shim plate after the installation of high tension bolts. The static loading tests results show that the maximum bending strength of splice is not dependent on the gap, but the vertical displacement, initial stiffness and elastic stiffness are affected by the gap. In addition to that, the possibility of brittle fracture is increased when the torque of high tension bolt is used to control the gap. Thus, careful consideration is needed in this case.

Experimental Study on the Load Transfer Behavior of Steel Grid Composite Deck Joint (격자형 강합성 바닥판 이음부의 하중전달 거동에 관한 실험적 연구)

  • Shin, Hyun-Seop
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.4
    • /
    • pp.10-21
    • /
    • 2014
  • The joint of prefabricated steel grid composite deck is composed of concrete shear key and high-tension bolts. The flexural and shear strength of the joint were experimentally evaluated only by the bending and push-out test of the joint element. In this study the lateral load transfer behavior of the joint in deck structure system is experimentally evaluated. Several decks connected by the joint are prefabricated and loaded centrically and eccentrically. In the case of centrically loaded specimens, the analysis results show that for the same loading step the rotation angle of the joint with 4 high-tension bolts is larger than the case of the joint with 9 high-tension bolts. Consequently, flexural stiffness of deck and lateral load transfer decrease in the case of specimen with 4 high-tension bolts. But, in the case of eccentrically loaded specimens, it is found that there are no significant differences in the load transfer behavior. The further analysis results about the structural behavior of the joint show that lateral load transfer can be restricted by the load bearing capacity of the joint as well as punching shear strength of the slab. Furthermore, considering that high-tension bolts in the joint didn't reach to the yielding condition until the punching shear failure, increase in the number of high-tension bolts from 4 to 9 has a greater effect on the flexural stiffness of the joint and deck system than the strength of them.

Numerical Model Study on a Scheme to Restrain Deformation of a Conduit with Flexible Joints(II) : Effectiveness of Concrete Bedding Reinforcement (연성이음관의 변형억제방안에 관한 수치모델연구(II): 콘크리트베딩 보강효과)

  • 손준익;정하익
    • Geotechnical Engineering
    • /
    • v.7 no.4
    • /
    • pp.15-24
    • /
    • 1991
  • This paper reports the application study of the concrete bedding reinforcement under a buried conduit with flexible joints subjected to differential settlement via a finite elemen modeling. The reinforcement of concrete bedding helps to minimize the differential settlement between the adjoining conduit segments. Three different field conditions have been considered. The settlement pattern and deformation slope have been evaluated for each boundary condition. The analysis results are compared for both non-reinforced and reinforced cases to measure the effectiveness of concrete bedding reinforcement for restraining deformation of a conduit with flexible joints.

  • PDF