본 논문은 작업일정계획에서 부하평준화 문제를 효율적으로 해결하기 위하여 tabu 탐색을 적용함에 있어서 확률적 선별에 기반하여 이웃해를 생성하는 방법을 제시한다. 이웃해 생성은 부하평준화를 위해 일정을 조정할 대상 작업을 선택하는 단계와 선택된 작업에 대해 일정 조정의 방향을 결정하는 단계로 구분된다. 확률적 선별에 기반한 이웃해 생성은 우선 무작위로 추출된 작업에 대해서 탐색의 질을 개선시킬 수 있는 가능성에 대한 추정치에 따라 확률을 부여하고, 이 확률에 기반하여 선택여부를 결정함으로써 이웃해를 선별하는 방법이다. 실제 현장의 부하평준화 문제를 대상으로 이웃해 생성 방법으로 무작위 방법, 그리디(greedy) 방법과의 비교 실험을 통해 확률적 선별에 기반한 이웃해 생성 방법의 성능을 검증하였다.
금질 기법을 이용한 테스트 데이터 자동 생성 기법은 오랫동안 연구되어 왔으며, 효율적인 테스트 데이터 생성 방법 중 하나이다. 그러나 인풋 도메인이 넓을 경우, 기존의 담금질 기법은 이웃 선택 기법의 한계 때문에 나쁜 성능을 보였다. 이러한 한계를 극복하기 위해, 우리는 새로운 이웃 선택 기법인 분기 거리 이웃 선택 방법을 제안한다. 제안된 기법의 성능을 검증하기 위해서 우리는 분기 거리 이웃 선택 기법, 기존의 이웃 선택 기법 그리고 랜덤 테스트 데이터 생성 기법을 비교하는 실험을 수행하였다. 실험 결과 제안된 기법이 2가지 기법에 비해 우수한 성능을 보임을 알 수 있었다.
순회 외판원 문제는 가장 유명한 조합 최적화 문제 중 하나이다. 지금까지 이 문제를 해결하기 위해 많은 메타휴리스틱 탐색 알고리즘들이 제안되어 왔으며, 그중의 하나가 지역 탐색이다. 지역 탐색에 있어서 매우 중요한 요소 중 하나가 이웃해 생성 방법으로 주로 역전(inversion)과 같은 무작위 기반 이웃해 생성 방법들이 사용되어 왔다. 본 논문에서는 4가지의 새로운 그리디 기반 이웃해 생성 방법들을 제안한다. 3가지 방법은 그리디 삽입 휴리스틱을 기반으로 하는데, 선택된 도시들을 하나씩 차례로 현재 가장 좋은 위치로 삽입한다. 나머지 하나는 그리디 회전을 기반으로 한다. 제안된 방법들은 대표적인 지역 탐색 알고리즘인 first-choice 언덕 오르기 탐색과 시뮬레이티드 어닐링에 적용된다. 실험을 통해 제안된 그리디 기반 방법들이 기존의 무작위 기반 방법들보다 성능이 우수함을 확인하였다. 또한 일부 그리디 기반 방법들은 기존의 지역 탐색 기법들보다 더 우수함을 확인하였다.
일반적으로 국지적 탐색에서 최적해를 획득할 가능성은 가능한 많은 이웃해를 생성하면서 반복 수를 늘릴수록 높아지나 긴 탐색시간이 소요된다. 따라서 한정된 시간 내에 최적해를 효율적으로 찾기 위해서는. 적절한 수의 이웃해를 생성하되, 탐색의 질을 높일 수 있는 이웃해를 선별해서 생성하는 것이 요구된다. 본 논문에서는 국지적 탐색기법을 적용하여 부하평준화 문제를 해결할 때, 탐색의 효율을 향상시킬 수 있는 이웃해 선정 기법을 제안하고, 실세계 데이타를 대상으로 그 성능을 검증하였다. 본 논문에서 제안하는 이웃해 선정 기법은 확률적 선별에 기반 한 방법으로서, 탐색의 질을 개선시킬 가능성에 대한 추정치를 기준으로 부여된 확률에 따라 이웃해를 선별하여 생성하는 기법이다. 대상 문제에 국지적 탐색기법으로 tabu 탐색과 simulated annealing를 적용한 실험에서, 무작위 또는 그리디 선별에 기반 한 방법보다 우수한 성능을 보임을 확인하였다.
지역 탐색은 다양한 조합 최적화 문제들을 해결하기 위해 활용되어 왔다. 지역 탐색에 있어서 가장 중요한 요소 중 하나가 이웃해를 생성하는 방법이다. 본 논문에서는 순열 기반 조합 최적화를 위한 지역 탐색의 이웃해 생성 전략들을 제안하고, 순회 외판원 문제를 대상으로 각 전략들의 성능을 비교한다. 본 논문에서는 총 10가지 이웃해 생성 전략을 제안한다. 기본적으로 기존에 많이 사용했던 Swap 등 4가지 전략 이외에 Rotation 등 4가지 기법을 새롭게 제안한다. 이외에 기본 이웃해 생성 전략들을 결합하여 만든 Combined1과 Combined2가 있다. 실험은 기본적인 지역 탐색을 적용하되 이웃해 생성 전략만 변경하여 수행하였다. 실험 결과, 이웃해 생성 전략에 따라 성능 차이가 큰 것을 확인하였으며 아울러 Combined2의 성능이 가장 좋음을 확인하였다. 뿐만 아니라 Combined2는 기존의 지역 탐색 기법들보다 더 좋은 성능을 발휘함을 확인하였다.
타부 탐색은 타부 전략 기법과 최급 강하 알고리즘이 결합된 알고리즘이다. 이는 한번 방문한 해는 다시 방문하지 않음으로써 지역 최적해에 수렴하지 않고 새로운 방향으로 움직이게 하여 공간 탐색 능력 효율을 높인다. 그러나 기존의 타부 탐색에서 이웃 해를 생성하는 방법에 따라 성능이 많이 좌우된다. 좋지 않은 이웃 해를 생성하는 탐색에서는 얻고자 하는 최적해에 수렴하는 시간이 많이 걸린다. 따라서 이웃 해를 생성할 때 해밍 거리를 고려하여 균형 있는 이웃 해론 생성하고, 해 공간은 탐색함으로써 우수한 최적해를 얻게 됨을 본 논문에서는 보여주고 있다. 이는 다양성도 보장되므로 최적해에 수렴해 가는 속도 또한 빠른 것을 보여주고 있다.
1차원 3-이웃 셀룰라 오토마타(Cellular Automata, 이하 CA) 기반의 의사난수 생성기는 시스템의 성능을 평가하기 위한 테스트 패턴 생성과 암호 시스템의 키수열 생성기 등에 많이 응용되고 있다. 본 논문에서는 더 복잡하고 혼돈스러운 수열을 생성할 수 있는 CA기반의 키 수열 생성기를 설계하기 위해 각 셀의 상태전이에 영향을 주는 이웃을 5개로 확장한 1차원 대칭 5-이웃 CA에 대해 연구한다. 특히 대칭 5-이웃 CA를 합성하기 위해 Krylov 행렬을 이용하는 대수적인 방법과 Cho et al.의 알고리즘을 기반으로 한 1차원 n셀 대칭 5-이웃 CA 합성 알고리즘을 제안한다.
순회 외판원 문제(TSP)는 잘 알려진 조합 최적화 문제 중 하나이다. 지역 탐색은 TSP를 해결하기 위한 한 가지 방법으로 사용되어 왔다. Greedy Random Insertion(GRI)은 지역 탐색을 위한 효과적인 이웃해 생성 방법으로 알려져 있다. GRI는 현재해로부터 일부 도시들을 무작위로 선택하고 그 도시들을 한 번에 하나의 도시만 고려하여 현재 부분해의 최적 위치로 삽입한다. 본 논문에서는 먼저 Full Greedy Insertion(FGI)이라는 또 다른 그리디 이웃해 생성 방법을 제안한다. FGI는 GRI와 마찬가지로 삽입 위치를 하나씩 결정하되 남은 모든 도시들을 한꺼번에 고려하여 결정한다. 그리고 본 논문에서는 GRI와 FGI를 결합하는 방법을 제시한다. 결합 방법에서는 시뮬레이티드 어닐링 내에서 매 반복 시 GRI 또는 FGI를 무작위로 선택하여 실행한다. 실험 결과에 의하면, FGI 단독으로는 성능이 매우 우수한 것은 아니다. 그러나 결합 방법은 GRI를 포함한 기존의 지역 탐색 방법들보다 우수한 성능을 발휘함을 확인하였다.
시스템의 성능을 평가하기 위하여 1차원 3-이웃 셀룰라 오토마타(Cellular Automata, 이하 CA) 기반의 의사 난수 생성기가 여러 분야에서 많이 응용되고 있다. 보다 더 효과적인 키 수열 생성을 위해 2차원 CA와 1차원 5-이웃 CA가 응용되었으나, 주어진 특성 다항식에 대응하는 대칭 1차원 5-이웃 CA를 설계하는 것은 매우 어려운 문제이다. 이를 해결하기 위해 특성 다항식의 점화식을 이용한 합성 방법, Krylov 행렬을 이용한 합성 방법과 같이 1차원 5-이웃 CA 합성에 관한 연구들이 진행되었다. 그러나 여전히 비선형 방정식을 풀어야 하는 문제점이 있었다. 이러한 문제점을 해결하기 위해, 최근 90/150 CA의 전이 행렬과 블록행렬을 이용한 1차원 5-이웃 CA 합성 방법이 제안되었다. 본 논문에서는 제안된 알고리즘의 이론적인 과정을 상세히 기술하고 그 알고리즘을 이용하여 높은 차수의 원시 다항식에 대응하는 대칭 1차원 5-이웃 CA를 구한다.
영상회의 장치에서 눈맞춤 영상을 생성하기 위해 어파인 변환(affine transformation)을 이용하면 반올림 오차(round-off error) 때문에 홀이 발생한다. 이러한 홀을 채우려면 홀 영역을 가리키는 홀 채움 마스크가 필요하다. 홀 채움은 보통 홀 채움 마스크를 참조하여 홀이 아닌 이웃 화소값들을 기반으로 손상된 영상을 복원하는 작업이다. 따라서 홀 영역을 정확히 검출하고 적당한 개수의 이웃 화소값을 참조해야 자연스러운 홀 채움 영상을 생성할 수 있다. 한편, 눈맞춤 영상을 생성할 때 얼굴 특징점을 이용해 얼굴 변환 마스크를 만들고, 얼굴 변환 마스크에만 어파인 변환을 수행한다. 이 논문에서는 얼굴 특징점에도 어파인 변환을 수행하고 수정된 얼굴 변환 마스크를 획득하여 정확한 홀 채움 마스크를 구한다. 또한, 홀 채움 마스크에서 레이블링을 수행하여 큰 홀 영역을 제거한다. 마지막으로, 어파인 변환을 수행할 때 기존 영상의 좌표값을 이용하여 자연스러운 홀 채움 영상을 생성한다. 제안하는 방법으로 홀 채움을 수행한 결과, 연속적인 눈맞춤 동영상에서 이웃값들을 참조하여 홀 채움을 수행한 영상보다 자연스러움을 확인했다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.