• 제목/요약/키워드: 이웃해 생성 방법

검색결과 121건 처리시간 0.022초

부하평준화를 위한 Tabu 탐색의 효율적 이웃해 생성 방법

  • 강병호;조민숙;류광렬
    • 한국지능정보시스템학회:학술대회논문집
    • /
    • 한국지능정보시스템학회 2003년도 춘계학술대회
    • /
    • pp.429-434
    • /
    • 2003
  • 본 논문은 작업일정계획에서 부하평준화 문제를 효율적으로 해결하기 위하여 tabu 탐색을 적용함에 있어서 확률적 선별에 기반하여 이웃해를 생성하는 방법을 제시한다. 이웃해 생성은 부하평준화를 위해 일정을 조정할 대상 작업을 선택하는 단계와 선택된 작업에 대해 일정 조정의 방향을 결정하는 단계로 구분된다. 확률적 선별에 기반한 이웃해 생성은 우선 무작위로 추출된 작업에 대해서 탐색의 질을 개선시킬 수 있는 가능성에 대한 추정치에 따라 확률을 부여하고, 이 확률에 기반하여 선택여부를 결정함으로써 이웃해를 선별하는 방법이다. 실제 현장의 부하평준화 문제를 대상으로 이웃해 생성 방법으로 무작위 방법, 그리디(greedy) 방법과의 비교 실험을 통해 확률적 선별에 기반한 이웃해 생성 방법의 성능을 검증하였다.

  • PDF

테스트 데이터 생성을 위한 개선된 이웃 선택 방법을 이용한 담금질 기법 기술 (a improved neighborhood selection of simulated annealing technique for test data generation)

  • 최현재;이선열;채흥석
    • 소프트웨어공학소사이어티 논문지
    • /
    • 제24권2호
    • /
    • pp.35-45
    • /
    • 2011
  • 금질 기법을 이용한 테스트 데이터 자동 생성 기법은 오랫동안 연구되어 왔으며, 효율적인 테스트 데이터 생성 방법 중 하나이다. 그러나 인풋 도메인이 넓을 경우, 기존의 담금질 기법은 이웃 선택 기법의 한계 때문에 나쁜 성능을 보였다. 이러한 한계를 극복하기 위해, 우리는 새로운 이웃 선택 기법인 분기 거리 이웃 선택 방법을 제안한다. 제안된 기법의 성능을 검증하기 위해서 우리는 분기 거리 이웃 선택 기법, 기존의 이웃 선택 기법 그리고 랜덤 테스트 데이터 생성 기법을 비교하는 실험을 수행하였다. 실험 결과 제안된 기법이 2가지 기법에 비해 우수한 성능을 보임을 알 수 있었다.

  • PDF

Greedy-based Neighbor Generation Methods of Local Search for the Traveling Salesman Problem

  • Hwang, Junha;Kim, Yongho
    • 한국컴퓨터정보학회논문지
    • /
    • 제27권9호
    • /
    • pp.69-76
    • /
    • 2022
  • 순회 외판원 문제는 가장 유명한 조합 최적화 문제 중 하나이다. 지금까지 이 문제를 해결하기 위해 많은 메타휴리스틱 탐색 알고리즘들이 제안되어 왔으며, 그중의 하나가 지역 탐색이다. 지역 탐색에 있어서 매우 중요한 요소 중 하나가 이웃해 생성 방법으로 주로 역전(inversion)과 같은 무작위 기반 이웃해 생성 방법들이 사용되어 왔다. 본 논문에서는 4가지의 새로운 그리디 기반 이웃해 생성 방법들을 제안한다. 3가지 방법은 그리디 삽입 휴리스틱을 기반으로 하는데, 선택된 도시들을 하나씩 차례로 현재 가장 좋은 위치로 삽입한다. 나머지 하나는 그리디 회전을 기반으로 한다. 제안된 방법들은 대표적인 지역 탐색 알고리즘인 first-choice 언덕 오르기 탐색과 시뮬레이티드 어닐링에 적용된다. 실험을 통해 제안된 그리디 기반 방법들이 기존의 무작위 기반 방법들보다 성능이 우수함을 확인하였다. 또한 일부 그리디 기반 방법들은 기존의 지역 탐색 기법들보다 더 우수함을 확인하였다.

부하평준화 문제에서 국지적 탐색의 효율향상을 위한 이웃해 선정 기법 (A Neighbor Selection Technique for Improving Efficiency of Local Search in Load Balancing Problems)

  • 강병호;조민숙;류광렬
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제31권2호
    • /
    • pp.164-172
    • /
    • 2004
  • 일반적으로 국지적 탐색에서 최적해를 획득할 가능성은 가능한 많은 이웃해를 생성하면서 반복 수를 늘릴수록 높아지나 긴 탐색시간이 소요된다. 따라서 한정된 시간 내에 최적해를 효율적으로 찾기 위해서는. 적절한 수의 이웃해를 생성하되, 탐색의 질을 높일 수 있는 이웃해를 선별해서 생성하는 것이 요구된다. 본 논문에서는 국지적 탐색기법을 적용하여 부하평준화 문제를 해결할 때, 탐색의 효율을 향상시킬 수 있는 이웃해 선정 기법을 제안하고, 실세계 데이타를 대상으로 그 성능을 검증하였다. 본 논문에서 제안하는 이웃해 선정 기법은 확률적 선별에 기반 한 방법으로서, 탐색의 질을 개선시킬 가능성에 대한 추정치를 기준으로 부여된 확률에 따라 이웃해를 선별하여 생성하는 기법이다. 대상 문제에 국지적 탐색기법으로 tabu 탐색과 simulated annealing를 적용한 실험에서, 무작위 또는 그리디 선별에 기반 한 방법보다 우수한 성능을 보임을 확인하였다.

Neighbor Generation Strategies of Local Search for Permutation-based Combinatorial Optimization

  • Hwang, Junha
    • 한국컴퓨터정보학회논문지
    • /
    • 제26권10호
    • /
    • pp.27-35
    • /
    • 2021
  • 지역 탐색은 다양한 조합 최적화 문제들을 해결하기 위해 활용되어 왔다. 지역 탐색에 있어서 가장 중요한 요소 중 하나가 이웃해를 생성하는 방법이다. 본 논문에서는 순열 기반 조합 최적화를 위한 지역 탐색의 이웃해 생성 전략들을 제안하고, 순회 외판원 문제를 대상으로 각 전략들의 성능을 비교한다. 본 논문에서는 총 10가지 이웃해 생성 전략을 제안한다. 기본적으로 기존에 많이 사용했던 Swap 등 4가지 전략 이외에 Rotation 등 4가지 기법을 새롭게 제안한다. 이외에 기본 이웃해 생성 전략들을 결합하여 만든 Combined1과 Combined2가 있다. 실험은 기본적인 지역 탐색을 적용하되 이웃해 생성 전략만 변경하여 수행하였다. 실험 결과, 이웃해 생성 전략에 따라 성능 차이가 큰 것을 확인하였으며 아울러 Combined2의 성능이 가장 좋음을 확인하였다. 뿐만 아니라 Combined2는 기존의 지역 탐색 기법들보다 더 좋은 성능을 발휘함을 확인하였다.

균형 있는 이웃 해 생성 전략을 통한 타부 탐색 (Tabu Search using Balanced Neighborhood Production Strategy)

  • 전대석;전향신;권기호
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2003년도 추계학술발표논문집 (중)
    • /
    • pp.789-792
    • /
    • 2003
  • 타부 탐색은 타부 전략 기법과 최급 강하 알고리즘이 결합된 알고리즘이다. 이는 한번 방문한 해는 다시 방문하지 않음으로써 지역 최적해에 수렴하지 않고 새로운 방향으로 움직이게 하여 공간 탐색 능력 효율을 높인다. 그러나 기존의 타부 탐색에서 이웃 해를 생성하는 방법에 따라 성능이 많이 좌우된다. 좋지 않은 이웃 해를 생성하는 탐색에서는 얻고자 하는 최적해에 수렴하는 시간이 많이 걸린다. 따라서 이웃 해를 생성할 때 해밍 거리를 고려하여 균형 있는 이웃 해론 생성하고, 해 공간은 탐색함으로써 우수한 최적해를 얻게 됨을 본 논문에서는 보여주고 있다. 이는 다양성도 보장되므로 최적해에 수렴해 가는 속도 또한 빠른 것을 보여주고 있다.

  • PDF

Krylov 행렬을 이용한 대칭 1차원 5-이웃 CA의 합성 (Synthesis of Symmetric 1-D 5-neighborhood CA using Krylov Matrix)

  • 조성진;김한두;최언숙;강성원
    • 한국전자통신학회논문지
    • /
    • 제15권6호
    • /
    • pp.1105-1112
    • /
    • 2020
  • 1차원 3-이웃 셀룰라 오토마타(Cellular Automata, 이하 CA) 기반의 의사난수 생성기는 시스템의 성능을 평가하기 위한 테스트 패턴 생성과 암호 시스템의 키수열 생성기 등에 많이 응용되고 있다. 본 논문에서는 더 복잡하고 혼돈스러운 수열을 생성할 수 있는 CA기반의 키 수열 생성기를 설계하기 위해 각 셀의 상태전이에 영향을 주는 이웃을 5개로 확장한 1차원 대칭 5-이웃 CA에 대해 연구한다. 특히 대칭 5-이웃 CA를 합성하기 위해 Krylov 행렬을 이용하는 대수적인 방법과 Cho et al.의 알고리즘을 기반으로 한 1차원 n셀 대칭 5-이웃 CA 합성 알고리즘을 제안한다.

A Combined Greedy Neighbor Generation Method of Local Search for the Traveling Salesman Problem

  • Yongho Kim;Junha Hwang
    • 한국컴퓨터정보학회논문지
    • /
    • 제29권4호
    • /
    • pp.1-8
    • /
    • 2024
  • 순회 외판원 문제(TSP)는 잘 알려진 조합 최적화 문제 중 하나이다. 지역 탐색은 TSP를 해결하기 위한 한 가지 방법으로 사용되어 왔다. Greedy Random Insertion(GRI)은 지역 탐색을 위한 효과적인 이웃해 생성 방법으로 알려져 있다. GRI는 현재해로부터 일부 도시들을 무작위로 선택하고 그 도시들을 한 번에 하나의 도시만 고려하여 현재 부분해의 최적 위치로 삽입한다. 본 논문에서는 먼저 Full Greedy Insertion(FGI)이라는 또 다른 그리디 이웃해 생성 방법을 제안한다. FGI는 GRI와 마찬가지로 삽입 위치를 하나씩 결정하되 남은 모든 도시들을 한꺼번에 고려하여 결정한다. 그리고 본 논문에서는 GRI와 FGI를 결합하는 방법을 제시한다. 결합 방법에서는 시뮬레이티드 어닐링 내에서 매 반복 시 GRI 또는 FGI를 무작위로 선택하여 실행한다. 실험 결과에 의하면, FGI 단독으로는 성능이 매우 우수한 것은 아니다. 그러나 결합 방법은 GRI를 포함한 기존의 지역 탐색 방법들보다 우수한 성능을 발휘함을 확인하였다.

대칭 1차원 5-이웃 CA 기반의 키 수열 생성기 설계 (Design of Key Sequence Generators Based on Symmetric 1-D 5-Neighborhood CA)

  • 최언숙;김한두;강성원;조성진
    • 한국전자통신학회논문지
    • /
    • 제16권3호
    • /
    • pp.533-540
    • /
    • 2021
  • 시스템의 성능을 평가하기 위하여 1차원 3-이웃 셀룰라 오토마타(Cellular Automata, 이하 CA) 기반의 의사 난수 생성기가 여러 분야에서 많이 응용되고 있다. 보다 더 효과적인 키 수열 생성을 위해 2차원 CA와 1차원 5-이웃 CA가 응용되었으나, 주어진 특성 다항식에 대응하는 대칭 1차원 5-이웃 CA를 설계하는 것은 매우 어려운 문제이다. 이를 해결하기 위해 특성 다항식의 점화식을 이용한 합성 방법, Krylov 행렬을 이용한 합성 방법과 같이 1차원 5-이웃 CA 합성에 관한 연구들이 진행되었다. 그러나 여전히 비선형 방정식을 풀어야 하는 문제점이 있었다. 이러한 문제점을 해결하기 위해, 최근 90/150 CA의 전이 행렬과 블록행렬을 이용한 1차원 5-이웃 CA 합성 방법이 제안되었다. 본 논문에서는 제안된 알고리즘의 이론적인 과정을 상세히 기술하고 그 알고리즘을 이용하여 높은 차수의 원시 다항식에 대응하는 대칭 1차원 5-이웃 CA를 구한다.

자연스러운 눈맞춤 영상을 위한 홀 채움 방법 (Hole Filling Method for Natural Eye Gaze Correction)

  • 고은상;호요성
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송공학회 2015년도 추계학술대회
    • /
    • pp.169-172
    • /
    • 2015
  • 영상회의 장치에서 눈맞춤 영상을 생성하기 위해 어파인 변환(affine transformation)을 이용하면 반올림 오차(round-off error) 때문에 홀이 발생한다. 이러한 홀을 채우려면 홀 영역을 가리키는 홀 채움 마스크가 필요하다. 홀 채움은 보통 홀 채움 마스크를 참조하여 홀이 아닌 이웃 화소값들을 기반으로 손상된 영상을 복원하는 작업이다. 따라서 홀 영역을 정확히 검출하고 적당한 개수의 이웃 화소값을 참조해야 자연스러운 홀 채움 영상을 생성할 수 있다. 한편, 눈맞춤 영상을 생성할 때 얼굴 특징점을 이용해 얼굴 변환 마스크를 만들고, 얼굴 변환 마스크에만 어파인 변환을 수행한다. 이 논문에서는 얼굴 특징점에도 어파인 변환을 수행하고 수정된 얼굴 변환 마스크를 획득하여 정확한 홀 채움 마스크를 구한다. 또한, 홀 채움 마스크에서 레이블링을 수행하여 큰 홀 영역을 제거한다. 마지막으로, 어파인 변환을 수행할 때 기존 영상의 좌표값을 이용하여 자연스러운 홀 채움 영상을 생성한다. 제안하는 방법으로 홀 채움을 수행한 결과, 연속적인 눈맞춤 동영상에서 이웃값들을 참조하여 홀 채움을 수행한 영상보다 자연스러움을 확인했다.

  • PDF