• Title/Summary/Keyword: 이완영역

Search Result 175, Processing Time 0.032 seconds

Load transfer mechanism due to tunnel excavation in the jointed sandy ground (불연속면을 포함한 사질토 지반에서 터널 굴착에 따른 하중전이)

  • Lee, Sang-Duk;Kim, Yang-Woon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.5 no.3
    • /
    • pp.217-226
    • /
    • 2003
  • This study is focused on the finding out load transfer mechanism in the ground near the tunnel during tunnel excavation in the jointed sandy ground. Laboratory model tests were performed on various cases of the overburden heights above tunnel crown, location, and degree of discontinuity planes. For model tests, a movable plate was installed in the midst of the bottom of sandy ground. This plate, moving downwards, was intended to model the stress relaxation during tunnel excavation. The load transfer was measured at the fixed separated bottom plates adjacent to the movable plate. As the result, the loosening zone and the load-transfer form around the tunnelling site were affected by the overburden height and the characteristics of discontinuous planes. And large loosening zone was developed along the discontinuous planes which were close to the tunnel.

  • PDF

A Study on Simulation of Cavity and Relaxation Zone Using Laboratory Model Test and Discrete Element Method (실내모형실험과 개별요소법을 이용한 지반 공동 및 이완영역 모사에 관한 연구)

  • Kim, Joo-Bong;You, Seung-Kyong;Han, Jung-Geun;Hong, Gi-Gwon;Park, Jong-Beom
    • Journal of the Korean Geosynthetics Society
    • /
    • v.16 no.2
    • /
    • pp.11-21
    • /
    • 2017
  • Ground subsidence mainly occurs due to the soil wash-away caused by cracked sewer pipes. It is necessary to understand the behavior surrounding soils with the formation of cavity and relaxation zone to set up counterplan. In this paper, a series of laboratory model tests and numerical analyses (Discrete Element Method) were performed to investigate the ground subsidence mechanism due to sewer pipe damage. For model tests, aluminum rod and trap door were used to simulate the behavior of model ground. Test results were compared with the numerical analyses conducted under the same boundary conditions with model tests. From this study, it was investigated the shape and size of cavity and relaxation zone due to the soil wash-away and a void ratio distribution of surrounding soils with relaxation properties.

Analysis of GPR Exploration Limit of Open-Cut Type Excavation (개착식 굴착현장의 GPR 탐사한계 분석기법 연구)

  • Han, Yushik;Kim, Woo-Seok
    • Journal of Korean Society of Disaster and Security
    • /
    • v.10 no.1
    • /
    • pp.47-53
    • /
    • 2017
  • Accurate exploration of the risk factors of the ground subsidence is needed to predict and evaluate the subsidence of the surrounding ground due to the excavation of the ground. In this study, we analyzed the distribution of soil relaxation area by analyzing the behavior around the ground excavation site and simulated the GPR exploration under various conditions. As a result, Although there are some differences according to the water content, distribution of the strata and the distribution of the relaxation region were confirmed in the unsaturated soil, and it was found that there was a difficulty in the GPR exploration in the saturated soil.

Experimental Study for Confirmation of Relaxation Zone in the Underground Cavity Expansion (지중 내 공동 확장에 따른 이완영역 확인을 위한 실험적 연구)

  • Kim, Youngho;Kim, Hoyeon;Kim, Yeonsam;You, Seung-Kyong;Han, Jung-Geun
    • Journal of the Korean Geosynthetics Society
    • /
    • v.16 no.4
    • /
    • pp.231-240
    • /
    • 2017
  • Recently, there have been frequent occurrences of ground sink in the urban area, which have resulted in human and material damage and are accompanied by economic losses. This is caused by artificial factors such as soil loss, poor compaction, horizontal excavation due to the breakage of the aged sewage pipe, and lack of water proof at vertical excavation. The ground sink can be prevented by preliminary restoration and reinforcement through exploration, but it can be considered that it is not suitable for urgent restoration by the existing method. In this study, a model experiment was carried out to simulate the in-ground cavities caused by groundwater flow for developing non-excavation urgent restoration in underground cavity and the range of the relaxation zone was estimated by detecting the around the cavity using a relaxation zone detector. In addition, disturbance region and relaxation region were separated by injecting gypsum into cavity formed in simulated ground. The shape of the underground cavity due to the groundwater flow was similar to that of the failure mode III formed in the dense relative density ground due to water pipe breakage in the previous study. It was confirmed that the relaxed region detected using the relaxation zone detector is formed in an arch shape in the cavity top. The length ratio of the relaxation region to the disturbance region in the upper part of the cavity center is 2: 1, and it can be distinguished by the difference in the decrease of the shear resistance against the external force. In other words, it was confirmed that the secondary damage should not occur in consideration of the expandability of the material used as the injecting material in the pre-repair and reinforcement, and various ground deformation states will be additionally performed through additional experiments.

Evaluation of rock load based on critical shear strain concept on tunnels (한계전단변형률 개념을 이용한 터널의 지반이완하중 평가)

  • Kim, Jung-Joo;Lee, Jae-Kook;Kim, Jong-Uk;Yoo, Han-Kyu
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.15 no.6
    • /
    • pp.637-652
    • /
    • 2013
  • After studying the characteristics of three different evaluation methods of rock load; namely theoretical method, empirical method and numerical method, there were too many limitations for them to be applied on tunnels. Therefore, in this research paper, the method based on numerical analysis is selected to use as this method is the most reasonable one since it considers all parameters that are necessary for rock load estimations, and it also considers the interaction between ground and tunnel support. The critical shear strain concept formulated by Sakurai (1981) was used in order to measure exact rock load values based on numerical analysis. Evaluation on a Level 1 rock load height, which is depicted by the stable region in the graph shows that rock load is not affecting between ground grade 1~3, and it was evaluated that the fourth and fifth grades show less values of rock load height which led to the conclusion of a more economical design of concrete lining.

Ground Behavior Behind Soil Nailed Wall by Feed Back Analysis (역해석에 의한 쏘일네일링 벽체 배면지반의 거동 연구)

  • Jeon, Seong-Kon
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.3
    • /
    • pp.5-13
    • /
    • 2003
  • The soil nailing is one of the useful support-system in urban excavation because of the presence of other structures in the vicinity Since the soil nailing system was introduced, model experiments and theoretical studies have been performed to investigate behavior of soil nailed wall. However, there are few data in the case of multi-layered soil strata just like Seoul Metropolitan area in Korea. The feed back analyses are carried out using the measured wall displacement data for soil nailing construction sites with multi-layered strata in order to analyze the distance and the coefficients of extension zone of ground behind soil nailed wall. As a result, the distance of extension zone increased with increasing of the final excavation depth and the ratio of the distance to the final excavation depth was shown to be about 94% of the final excavation depth. Also, the coefficients of extension zone increased with enlargement of soil layer thickness and converged into constant value of 1.05. On the other hand, the maximum vertical displacements by the feed back analysis and Caspe's method were shown to be approximately 80%, 150~280% of the maximum horizontal displacement respectively.

Evaluation of Changes in Emotion Evoked by Imagination (심상 자극에 의해 유발된 감성변화의 평가)

  • 정순철;민병찬;전광진;김유나;성은정;신미경;김철중
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2001.05a
    • /
    • pp.182-185
    • /
    • 2001
  • 본 연구에서는 쾌, 불쾌, 긴장, 이완의 네 가지 상상을 통해 감성의 변화를 유도하였고, 생리 신호 분석을 통해 감성의 변화를 변별하고자 하였다. 20명의 피험자를 대상으로 네 가지 상상을 각각 30초씩 수행하게 하면서 EEG, ECG, GSR, PPG, RSP, Skin-Temperature를 각각 측정하였고 측정 종료 후 주관적 평가를 실시하였따. 주관적 평가 분석 결과, 피험자는 뚜렷이 구별되는 네 가지 상상을 한 것으로 나타났고, 쾌도는 “쾌 > 이완, 긴장 > 불쾌” 상상 순서의 3단계로, 긴장도는 “긴장 > 불쾌, 쾌 > 이완” 상상 순서의 3단계로 뚜렷이 구별되었다. EEG 분석 결과에서는 쾌와 불쾌, 쾌와 이완 상상 사이에서만, 자율신경계 반응 역시 약 2.5 단계의 긴장도 감성 변별이 가능하여 정확한 3단계의 감성 변별에는 어려움이 있었다. 그러나 향후 비선형 분석법을 적용하고 피험자 수를 증가시킨다면 생리 신호 분석을 통한 감성 변별 민감도를 증가시킬 수 있을 것으로 사료된다. 본 연구로부터 쾌/불쾌와 긴장/이완의 2차원의 감성 영역의 각 축을 EEG와 자율신경계의 생리 신호를 통해 변별할 수 있다는 가능성을 확인하였다.

  • PDF

Behavior of shallow 2-Arch tunnel due to excavation under horizontal discontinuity plane (수평 불연속변 하부에 굴착한 얄은 심도의 2-Arch 터널의 거동)

  • Cheon, Eun-Sook;Kim, Hong-Moon;Lee, Sang-Duk
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.7 no.3
    • /
    • pp.227-237
    • /
    • 2005
  • In this study, the behavior of shallow 2-Arch tunnel due to excavation under horizontal discontinuity plane was verified experimentally. The model tests were carried out by varying the overburden height and the location of the discontinuity plane. The model tests followed exactly the real 2-Arch tunnel construction stages. As a result, it is discovered that stress-transfer mechanism and loosening area around the 2-Arch tunnel depends on the overburden heights and the location of the discontinuity plane. And central pillar load is also dependent on overburden height, location of discontinuity plane and construction stages.

  • PDF

Improvement of Wave Generation for SWASH Model Using Relaxation Method (이완법을 이용한 SWASH 모형의 파랑 조파기법 개선)

  • Shin, Choong Hun;Yoon, Sung Bum
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.29 no.4
    • /
    • pp.169-179
    • /
    • 2017
  • In this study, we applied the wave generation method by relaxation method to the SWASH model, which is a non - hydrostatic numerical model, for stable and accurate wave generation of linear and nonlinear waves. To validate the relaxation wave generation method, we were simulated various wave, including the linear wave and nonliner wave and compared with analytical solution. As a result, the incident wave was successfully generated and propagated in all cases from Stokes waves to cnoidal wave. Also, we were confirmed that the wave height and the waveform were in good agreement with the analytical solution.

A research on EEG coherence variation by relaxation (이완에 따른 EEG 코히런스 변화에 대한 연구)

  • Kim, Jong-Hwa;Whang, Min-Cheol;Woo, Jin-Cheol;Kim, Chi-Joong;Kim, Young-Woo;Kim, Ji-Hye;Kim, Dong-Keun
    • Science of Emotion and Sensibility
    • /
    • v.13 no.1
    • /
    • pp.121-128
    • /
    • 2010
  • This study is to analyze change of connectivity between brain positions caused by relaxation through EEG coherence. EEG spectrum analysis method has been used to analyze brain activity when relaxation was experienced. However, the spectrum analysis method has a limit that could not observe interactive reaction between brain-functional positions. Therefore, coherence between positions was analyzed to observe connectivity between the measurement positions in this study. Through the method, the reaction of the central nervous system caused by the emotion change was observed. Twenty-four undergraduates of both genders(12 males and 12 females) were asked to close their eyes and listen to the sound. During experiment, EEG was measured at eight positions. The eight positions were F3, F4, T3, T4, P3, P4, O1, and O2 in accordance with International 10-20 system. The sounds with white noise and without were used for relaxation experience. Subjective emotion was measured to verify whether or not they felt relaxation. Subjective emotion of participants were analyzed by ANOVA method(Analysis of Variance). In the result, it was proved that relaxation was subjectively evoked when participants heard sound. Accordingly, it was proved that relaxation could be enhanced by the mixed white noise. EEG coherence between the measurement positions was analyzed. T-test was performed to find its significant difference between relaxation and not-relaxation. In the results of EEG coherence, connectivity with occipital lobes has been increased with relaxation, and connectivity with parietal lobes has been increased with non-relaxed state. Therefore, brain connectivity has shown different pattern between relaxed emotion and non-relaxed emotion.

  • PDF