• 제목/요약/키워드: 이온 선택성 미소전극

검색결과 3건 처리시간 0.023초

이온 선택성 미소전극과 전위계를 이용한 신호 계측 시스템의 특성 평가 (Characterization of Signal Measuring System Using ion Selective Microelectrode and Electrometer)

  • 전효용;선경숙;박정진;변임규;박태주
    • 대한환경공학회지
    • /
    • 제28권11호
    • /
    • pp.1148-1153
    • /
    • 2006
  • 이온 선택성 미소전극과 전위계를 이용하여 생물막내 이온 농도 측정을 위한 신호 계측 시스템을 구성하였다. 제작된 신호 계측 시스템의 성능과 적용성을 평가하기 위하여 보정곡선의 기울기, 검출한계, 시간경과에 따른 응답신호의 변화, 전위차 선택계수를 조사하였다. 보정곡선의 기울기는 목적이온 농도에 밀접한 비례관계를 나타내었다. 신호 계측 시스템은 $10{\mu}M$ 이하의 낮은 검출한계를 가졌으며, 실험에 사용된 방해이온에 민감하지 않았다. 본 연구에서 제작된 전위계는 상용되는 전위계와의 성능을 비교하였을 때 보정곡선 기울기, 검출한계, 응답시간에서 비슷한 경향을 나타내었다. 본 연구에서 제작된 신호 계측 시스템은 생물막내 이온농토 측정 연구를 위한 경제적이며 신뢰성 있는 시스템으로 사용될 수 있을 것이다.

이온선택성 미소전극을 이용한 질산화 생물막내의 질소 이온의 농도 모니터링 (Monitoring of Nitrogen Ion in Nitrifying Biofilm using an Ion Selective Microelectrode)

  • 선지윤;변임규;이태호;박태주
    • KSBB Journal
    • /
    • 제25권1호
    • /
    • pp.85-90
    • /
    • 2010
  • An ion selective microelectrode (ISME) was fabricated to measure concentrations of ammonium (${NH_4}^+$-N) and nitrate (${NO_3}^-$-N) according to the depth of nitrifying biofilm. The limits of detectability and validity of results were investigated to evaluate the ISME. The electromotive force (EMF) was directly proportional to the ion concentration, and average detection limits of ${NH_4}^+$ and ${NO_3}^-$ ISME were $10^{-5.14}$ and $10^{-5.18}$ M, respectively. The concentrations of ${NH_4}^+ $-N and ${NO_3}^-$-N in various depths on the nitrifying biofilm were measured by the ISME. When a modified Ludzack-Ettinger (MLE) process was operated at an HRT of 6 h, concentration gradients of ${NH_4}^+$-N in the bulk solution and biofilm at depths of $100\;{\mu}m$ decreased by $70\;{\mu}M$, while ${NO_3}^-$-N increased by $101\;{\mu}M$ and remained constant thereafter. At an HRT of 4 h, concentration gradients of ${NH_4}^+$-N at depths of $500\;{\mu}m$ decreased by $160\;{\mu}M$ and ${NO_3}^-$-N increased by $162;{\mu}M$ and remained constant thereafter. As HRT decreased, the concentration gradients of ${NH_4}^+$-N and ${NO_3}^-$-N between bulk solution and biofilm was higher due to the increase of nitrogen load. Also, the concentration gradients of the ${NH_4}^+$-N and ${NO_3}^-$-N of biofilm in the second aerobic tank were lower than those of the first aerobic tank, suggesting differences of nitrogen load and concentrations of DO between the first and second aerobic tank.

이온선택성 미소전극을 이용한 암모니아성 질소 및 질산성 질소의 연속 농도 측정 (Continuous Measurement of Ammonium-nitrogen and Nitrate-nitrogen using a Ion-Selective Microelectrode)

  • 임미지;선지윤;박정진;변임규;박태주;이태호
    • 한국물환경학회지
    • /
    • 제24권6호
    • /
    • pp.718-724
    • /
    • 2008
  • The ion selective microelectrode (ISME) has been used for measuring the ion profile of DO, $NH_4{^+}-N$, $NO_2{^-}-N$ and $NO_3{^-}-N$ in biofilm. In this study we evaluated the detection limit and validity of ISME and applied ISME for the continuous measurement of $NH_4{^+}-N$ and $NO_3{^-}-N$ concentration in the modified Ludzack-Ettinger (MLE) process. Average detection limits of $NH_4{^+}-N$ and $NO_3{^-}-N$ ISME were $10^{-4.44}M$ and $10^{-4.62}M$, respectively. Since the ISME with $5{\sim}10{\mu}m$ of tip diameter showed a faster response time than that of $1{\sim}5{\mu}m$, the ISME with a tip diameter of $5{\sim}10{\mu}m$ was fabricated and used to make real-time ion detections. Direct monitoring of $NH_4{^+}-N$ and $NO_3{^-}-N$ concentrations in the aerobic (2) tank causes the instability of the electromotive force (EMF) for the initial 5~8 hours and also causes remarkable error values of $NH_4{^+}-N$ and $NO_3{^-}-N$ concentration. This phenomenon is caused by aeration and mixing in the reactor. Thus, the measuring chamber was newly designed for the aerobic (2) tank and then the EMF of the ISME were stabilized in less than 1 hour. Errors of $NH_4{^+}-N$ and $NO_3{^-}-N$ concentration were decreased after stabilization of the EMF. The ISME analysis were well corresponded to the results of auto analyzer and ion chromatography. Consequently, the concentration of $NH_4{^+}-N$ and $NO_3{^-}-N$ could be continuously measured for 178 hours by the ISME.