• Title/Summary/Keyword: 이온확산

Search Result 651, Processing Time 0.027 seconds

A Study on Transport Characteristics of Hydrochloric Acid in an Anion Exchange Membrane (음이온 교환막에서 염산의 이동특성 연구)

  • 강문성;오석중;문승현
    • Membrane Journal
    • /
    • v.8 no.3
    • /
    • pp.148-156
    • /
    • 1998
  • Diffusion dialysis is a membrane process driven by concentration difference using ion-exchange membranes and has been employed for many years for the acid recovery from acidic waste generated in steel, metal-refining and dectro-plating industries. Theoretically acid flux increases in propomon to the acid concentration difference. At acid concentrations higher than 3 N HCl, however, the acid flux had not increased linearly with the concentration difference. In this paper the effects of acid concentrations on diffusion dialysis for hydrochloric acid recovery and the acid transport mechanism in an anion exchange membrane were studied by membrane sorption tests and diffusion clialysis cell tests. The experimental results showed that the molecular diffusion was a major transport mechanism in a low acid concentration range and the proton leakage through an anion exchange membrane played an important role at higher acid concentrations. Also osmotic water transport and membrane dehydration retarded the transport of protons and caused the permeate flux to decrease.

  • PDF

이온주입 및 열처리 조건에 따른 인 도핑 에미터의 전기적 특성평가

  • Park, Hyo-Min;Park, Seong-Eun;Kim, Yeong-Do;Nam, Yun-Jeong;Jeong, Tae-Won;Lee, Hae-Seok;Kim, Dong-Hwan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.482.2-482.2
    • /
    • 2014
  • 최근 고효율 실리콘 태양전지 제작을 위해 다양한 연구가 진행되고 있다. 이온주입법을 이용한 PN 접합 형성은 기존의 확산법에 비해 표면과 실리콘 기판 내부에서 도펀트 조절이 용이하다는 장점에 의해 주목 받고 있다. 하지만, 이온주입법으로 도펀트를 주입할 경우, 도펀트와 기판의 충격으로 비정질 상과 결정 결함이 형성된다. 결정 결함은 생성된 전자와 정공의 재결합 준위로 작용하기 때문에 적절한 이온주입 조건과 후 열처리를 통해 높은 특성을 갖는 PN접합층을 형성하여야 한다. 본 실험에서는 보론 도핑된 p형 실리콘 기판에 인을 주입하였다. 인 이온 주입 시 가속전압과 열처리 조건을 달리하여 전기적 특성을 관찰하였으며, 태양전지 에미터층으로의 적용 가능성을 조사해 보았다.

  • PDF

Chloride Diffusion Coefficient Model Considering the Initiation Time of Exposure to Chloride Environment (염소이온 노출개시시기를 고려한 기존 확산계수 모델 수정제안)

  • Kim, Ki-Hyun;Cha, Soo-Won
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.3
    • /
    • pp.377-386
    • /
    • 2009
  • A reference diffusion coefficient model from ACI life-365 is drawn from test results by NT build 443. This test method gives a time-averaged diffusion coefficient during immersion period, thus the ACI model uses the time-averaged diffusion coefficient as a reference value. ACI model needs to be revised, considering the difference between the time-average value and reference value at specified time. In this study, firstly the analytic solutions of diffusion equation are derived considering the initiation time and period of exposure to chloride, and secondly the time-averaged diffusion coefficient from NT build 443 is converted into the diffusion coefficient at reference time. From this study, the reference diffusion coefficient of ACI model should be modified to be about 10% larger values than those of present ACI model. For convenient design of service life, previous relationship between the chloride diffusion coefficient from NT build 443 and that from NT build 492 is also modified. To compare the chloride diffusion coefficients of ACI and JCI models, the reference chloride diffusion coefficient with respect to the JCI model is drawn in the similar form of ACI model's, and service life prediction by ACI life-365 method is confirmed to give a conservative result.

Synthesis and Electrochemical Properties of Li[Fe0.9Mn0.1]PO4 Nanofibers as Cathode Material for Lithium Ion Battery by Electrospinning Method (전기방사를 이용한 리튬 이차전지용 양극활물질 Li[Fe0.9Mn0.1]PO4 나노 섬유의 합성 및 전기화학적 특성)

  • Kim, Cheong;Kang, Chung-Soo;Son, Jong-Tae
    • Journal of the Korean Electrochemical Society
    • /
    • v.15 no.2
    • /
    • pp.95-100
    • /
    • 2012
  • $LiFePO_4$ is an attractive cathode material due to its low cost, good cyclability and safety. But it has low ionic conductivity and working voltage impose a limitation on its application for commercial products. In order to solve these problems, the iron($Fe^{2+}$)site in $LiFePO_4$ can be substituted with other transition metal ions such as $Mn^{2+}$ in pursuance of increase the working voltage. Also, reducing the size of electrode materials to nanometer scale can improve the power density because of a larger electrode-electrolyte contact area and shorter diffusion lengths for Li ions in crystals. Therefore, we chose electrospinning as a general method to prepare $Li[Fe_{0.9}Mn_{0.1}]PO_4$ to increase the surface area. Also, there have been very a few reports on the synthesis of cathode materials by electrospinning method for Lithium ion batteries. The morphology and nanostructure of the obtained $Li[Fe_{0.9}Mn_{0.1}]PO_4$ nanofibers were characterized using scanning electron microscopy(SEM). X-ray diffraction(XRD) measurements were also carried out in order to determine the structure of $Li[Fe_{0.9}Mn_{0.1}]PO_4$ nanofibers. Electrochemical properties of $Li[Fe_{0.9}Mn_{0.1}]PO_4$ were investigated with charge/discharge measurements, electrochemical impedance spectroscopy measurements(EIS).

A Study on the Luminescence Properties of Eu3+ Ions Doped Vanadate (Eu3+ 이온이 첨가된 바나듐산염의 형광특성 연구)

  • Kang, Yeonhee;Yoon, Changyong
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.3
    • /
    • pp.445-451
    • /
    • 2019
  • The fluorescence intensity and fluorescence lifetime of $Ba_2GdV_3O_{11}$, a vanadate compound based on $Ba^{2+}$ ion, were investigated by adding $Eu^{3+}$ as a rare earth ion which is an alkaline earth metal, which is distributed around active ions and has a large influence on fluorescent properties when used as a host in a phosphor. $Ba_2GdV_3O_{11}:Eu^{3+}$ phosphor was synthesized by solid state method and the crystallinity of the phosphor was confirmed by X - ray diffraction analysis. The fluorescence properties of the $Ba_2GdV_3O_{11}:Eu^{3+}$ phosphor were measured using optical and laser. The energy transfer and diffusion of the $Ba_2GdV_3O_{11}:Eu^{3+}$ phosphor are highly dependent on the concentration of $Eu^{3+}$. When the concentration of $Eu^{3+}$ is low, it shows strong fluorescence to the CT band. However, as the concentration of $Eu^{3+}$ increases, the fluorescence due to 4f - 4f transition is strong. The concentration of $Eu^{3+}$ ion increased and the energy between ions was diffused, and the lifetime of fluorescence decreased. Energy transfer occurs between two $Eu^{3+}$ ions at low $Eu^{3+}$ concentration and energy diffusion occurs at high $Eu^{3+}$ concentration.

Manufacture of the Prealloyed Powder for Powder Metallurgy by the Ion-diffusion Process (이온확산법에 의한 분말야금용 합금강분의 제조)

  • Yun, Seong-Ryeol;Han, Seung-Hui;Na, Jae-Hun;Kim, Chang-Uk
    • Korean Journal of Materials Research
    • /
    • v.8 no.3
    • /
    • pp.206-213
    • /
    • 1998
  • Cu, Ni, and Mo were ion-diffused into the pure steel powder in the aqueous solution of $(CuNO_3)_2$, $Ni(NO_3)_2)_2$, and $(NH_4)_6Mo_7O_{24}$, to form partial diffusion bond prealloyed steel powder. The mechanical properties, and compacting and sintering characteristics were investigated as a function of Cu. Ni and Mo contents. The results of the this research, it was found that the smallest change of size was observed, and the good degree of hardness and tensile strength was observed when 1.50wt%Cu, 1.75wt%Ni and 0.50wt%Mo was added each other. The powder metallurgy characteristics of partial diffusion bond prealloyed steel powder containing 1.50wt% of Cu, 1.75wt% of Ni and 0.5wt% of Mo were compared to those of distalloy $AB\textregistered$ which was manufactured in Hogani Corporation of Sweden. Partial diffusion bond prealloyed steel powder of this study had good degree of hardness and density, and its dimensional stability was same to that of pure steel powder. Under the same sintering density and temperature, the tensile strength of the ion powder from this research was $15~20Kg/\textrm{mm}^2$ larger than that of distalloy AB'. also the hardness was larger in the magnitude of Hv20-30. When the powder metallurgy heat-treated, hardness and tensile strength were substantially increased.

  • PDF

Buried Channel PMOS에서 이온 주입된 $BF_2$ 열처리 거동

  • Heo, Tae-Hun;No, Jae-Sang
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.374-374
    • /
    • 2012
  • 반도체 소자의 크기가 100 nm 이하로 감소되면 통상적인 이온 주입 조건인 이온 에너지, 조사량 및 이온 주입 각도뿐만 아니라 Dose Rate 및 모재 온도가 Dopant Profile을 조절하는 데에 있어서 매우 중요한 인자로 작용한다. 본 연구에서는 Ribbon-beam 및 Spot-beam을 사용하여 활성화 열처리 후 Dopant Profile을 분석하였다. 이온 주입은 모든 시편에서 $BF_2$를 가속 에너지 10 keV 및 조사량 $2{\times}10^{15}/cm^2$로 고정하였다. 이온 주입 후 도펀트 활성화는 100% 질소 분위기 하에서 $850^{\circ}C$-30s 조건으로 RTA 열처리를 수행하였다. Boron 및 Fluorine의 Profile은 SIMS 분석을 통하여 구하였다. Spot-beam은 Ribbon-Beam에 비하여 Dose Rate 및 Cooling Efficiency가 높기 때문에 이온 주입 후 더욱 많은 양의 Primary-defect를 발생시키고 이에 따라 두꺼운 비정질 충을 형성한다. $BF_2$ 이온 주입 된 시편에서 B 및 F의 농도 Peak-height는 a/c 계면에 위치하는 것을 관찰하였다. 또한 B 및 F의 농도 Peak-height는 Silicon 모재의 온도가 증가할수록 증가하는 것을 관찰하였다. Silicon 모재의 온도가 증가함에 따라 Active-area의 면저항이 변화하지 않는 상태에서 Vt (Threshold Voltage)가 급격히 감소함을 관찰 하였다. 비정칠 층의 두께가 증가할수록 a/c 계면 하단에 잔존하는 Residual-defect의 양이 감소하고 이는 측면확산을 감소시키는 역할을 한다는 것이 관찰되었다.

  • PDF