• Title/Summary/Keyword: 이온함

Search Result 758, Processing Time 0.028 seconds

Solvent Extraction of Lithium Ion in Aqueous Solution Using TTA and TOPO (TTA와 TOPO를 이용한 수용액 중의 리튬이온 용매추출)

  • Lee, Jeon-Kyu;Jeong, Sang-Gu;Koo, Su-Jin;Kim, Si-Young;Ju, Chang-Sik
    • Korean Chemical Engineering Research
    • /
    • v.51 no.1
    • /
    • pp.53-57
    • /
    • 2013
  • For the purpose of development of the extraction process of lithium ion from concentrated water eliminated from desalination process, an experimental research on the solvent extraction of lithium ion from aqueous solutions was performed. The effects of operating parameters, such as concentration of extractant, ratio of extracting solution/aqueous solution, pH of aqueous solution, were examined. The effect of sodium chloride, the major component of sea water, was also examined. Lithium ion in aqueous solutions of pH=10.2~10.6 adjusted by ammonia solution was most effectively extracted by extracting solution composed of 0.02 M TTA and 0.04 M TOPO in kerosine. The addition of sodium chloride in lithium aqueous solution significantly interfered the extraction of lithium ion.

Solvent Effect on Anode Performance in Lithium Ion Batteries (리튬 이온 전지의 부극 성능에 끼치는 용매의 영향)

  • Jeong, Gwang Il;Jo, Jeong Hwan;Sim, U Jong;Choe, Yong Guk
    • Journal of the Korean Chemical Society
    • /
    • v.46 no.6
    • /
    • pp.528-534
    • /
    • 2002
  • We have studied to find the optimum electrolyte that satisfied high ionic conductivity, large elec-trochemical window, etc in Li-ion battery. And also studied were the effect of a passive film on carbon anode surface,which is formed by solvent decomposition during the initial charge process. Electrochemical properties of the passive film formed on carbon anode surface investigated and explained as the volumetric ratio of the mixed solvents. The results of scanning electron microscopy, chronopotentiometry, cyclic voltammetry, impedance spectroscopy revealed that the electrochemical properties of the passive film were varied with the ionic conductivity of the electrolyte including the mixed solvents.

Chloride Ion Penetration Properties of Normal Strength High-Fluidity Concrete Using Lime Stone Powder (석회석 미분말을 활용한 보통강도 고유동 콘크리트의 염소이온 침투특성)

  • Choi, Yun-Wang;Moon, Jae-Heum;Eom, Joo-Han
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.4
    • /
    • pp.160-168
    • /
    • 2010
  • Recently, there are a lot of researches related to the high-fluidity concrete (HFC) with field applications. However, most applications and studies are with concretes with high strength level so there are little studies about durability evaluations such as chloride ion penetration properties with normal strength concrete. Therefore, to evaluate the durability of HFC with normal strength level, this study performed the chloride ion penetration test and observed the micro pore distribution with normal strength HFC which contains limestone powder. Experimental results showed that most micro-pores have diameters between 0.005 to 0.05 ${\mu}m$ with HFCs using limestone powder and the average diameter becomes larger with the increase of limestone powder content. Also, it was shown that, with the increase of the limestone powder content, penetration depth and diffusion coefficient of chloride ion increased and diffusion coefficient had good relationships with compressive strength and average pore diameter with the coefficient of determination over 0.90.

Ionic Liquids as a SO2 Absorption Media (이온성액체 기반 SO2 흡수제 개발 동향)

  • Choi, Ji-Shik;Johari, Suzaimi;Lee, Sang-Deuk;Lee, Hyun-Joo
    • Clean Technology
    • /
    • v.18 no.1
    • /
    • pp.22-30
    • /
    • 2012
  • Separation of $SO_2$ from the flue gases of fossil fuel power plants are important issue because of its strong environmental impact. Industrially, $SO_2$ is being removed with a slurry of limestone, lime or aqueous caustic soda. However, these scrubbing processes possess several drawbacks such as the generation of huge amount of wastewater and the production of metal salts. Recently, ionic liquids have gained increasing interest as an absorbent for acid gas, $CO_2$ and $SO_2$. In this review, we have introduced the recent progress of ionic liquids as a $SO_2$ absorbent.

Molecular Dynamics (MD) Study of Proton Exchange Membranes for Fuel Cells (연료전지용 수소이온 교환막의 분자동역학 연구)

  • Park, Chi Hoon;Nam, Sang Yong;Hong, Young Taik
    • Membrane Journal
    • /
    • v.26 no.5
    • /
    • pp.329-336
    • /
    • 2016
  • Proton exchange membrane (PEM) is one of the key components of membrane-electrode assembly (MEA), which plays important role in fuel cell performance together with catalysts. It is widely accepted that water channel morphology inside PEMs as a proton pathway significantly affects the PEM performance. Molecular dynamics (MD) simulations are a very useful tool to understand molecular and atomic structures of materials, so that many related researches are currently being studied. In this paper, we summarize the current research trend in MD simulations, present which properties can be characterized, and finally introduce the usefulness of MD simulations to the researchers for proton exchange membranes.

Reinforced Ion-exchange Membranes for Enhancing Membrane Capacitive Deionization (막 축전식 탈염 공정의 성능 향상을 위한 강화 이온교환막)

  • Min-Kyu Shin;Hyeon-Bee Song;Moon-Sung Kang
    • Membrane Journal
    • /
    • v.33 no.5
    • /
    • pp.257-268
    • /
    • 2023
  • Membrane capacitive deionization (MCDI) is a variation of the conventional CDI process that can improve desalination efficiency by employing an ion-exchange membrane (IEM) together with a porous carbon electrode. The IEM is a key component that greatly affects the performance of MCDI. In this study, we attempted to derive the optimal fabricating factors for IEMs that can significantly improve the desalination efficiency of MCDI. For this purpose, pore-filled IEMs (PFIEMs) were then fabricated by filling the pores of the PE porous support film with monomers and carrying out in-situ photopolymerization. As a result of the experiment, the prepared PFIEMs showed excellent electrochemical properties that can be applied to various desalination and energy conversion processes. In addition, through the correlation analysis between MCDI performance and membrane characteristic parameters, it was found that controlling the degree of crosslinking of the membranes and maximizing permselectivity within a sufficiently low level of membrane electrical resistance are the most desirable membrane fabricating condition for improving MCDI performance.

Lithium Recovery from NCM Lithium Ion Battery by Hydrogen Reduction Followed by Water Leaching (NCM계 리튬이온 배터리 양극재의 수소환원과 수침출에 의한 리튬 회수)

  • So-Yeong Lee;So-Yeon Lee;Dae-Hyeon Lee;Ho-Sang Sohn
    • Resources Recycling
    • /
    • v.33 no.1
    • /
    • pp.15-21
    • /
    • 2024
  • The demand for electric vehicles powered by lithium-ion batteries is continuously increasing. Recovery of valuable metals from waste lithium-ion batteries will be necessary in the future. This research investigated the effect of reaction temperature on the lithium recovery ratio from hydrogen reduction followed by water leaching from lithium-ion battery NCM-based cathode materials. As the reaction temperature increased, the weight loss ratio observed after initiation increased rapidly owing to hydrogen reduction of NiO and CoO; at the same time, the H2O amount generated increased. Above 602 ℃, the anode materials Ni and Co were reduced and existed in the metallic phases. As the hydrogen reduction temperature was increased, the Li recovery ratio also increased; at 704 ℃ and above, the Li recovery ratio reached a maximum of approximately 92%. Therefore, it is expected that Li can be selectively recovered by hydrogen reduction as a waste lithium-ion battery pretreatment, and the residue can be reprocessed to efficiently separate and recover valuable metals.

Morphological Behavior of Oxy-PAN Fiber upon pH Variation (Oxy-PAN 섬유의 산도 변화에 대한 형태학적 거동 특성)

  • 남재도;김재철;김현주;유동국;정창조
    • Polymer(Korea)
    • /
    • v.26 no.4
    • /
    • pp.492-500
    • /
    • 2002
  • Oxidized-polyacrylonitrile (oxy-PAN) was prepared by oxidation of PAN fiber at $240^{\circ}C$, followed by base catalyzed hydrolysis reaction. The chemical structure of PAN fiber in various pH conditions was characterized by $^{13}C-NMR$ spectroscopy. The characteristic contraction and expansion behavior of oxy -PAN fiber was observed in acidic and basic medium, respectively. In basic condition, water molecules might be absorbed into the fiber with the movement of charge balancing $Na^+$ ion, on the other hand, the water molecules seemed to be expelled in acidic condition to result in contraction. It was also observed that the facile chemical modification occurred due to free diffusion of aqueous reagent into the hydrophilic PAN fiber, and the morphology was affected by pH condition.

다양한 활성제 이온이 치환 고용된 MgNb2O6 형광체의 특성

  • Kim, Ji-Seon;Jo, Sin-Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.167-167
    • /
    • 2013
  • 최근에 산화물 형광체는 황화물 형광체에 비해 높은 화학적 안정성을 나타내기 때문에 백색 발광 다이오드, 전계방출 디스플레이와 플라즈마 디스플레이 패널에 그 응용성을 넓히고 있다. 마그네슘 니오베이트(magnesium niobate, MgNb2O6)는 우수한 유전 특성(상대 유전상수=18.4)을 나타내기 때문에 마이크로파 유전체로 응용 가능하며, 단일상 릴랙서 페라브스카이트(relaxor perovskite) Pb(Mg1/3Nb2/3)O3을 합성하기 위한 전구체 (precursor)로 널리 사용되고 있으며, 나이오븀산염 이온에서 다양한 색상을 방출하는 활성제 이온으로 효율적인 에너지 전달이 일어남으로써 Sm3+, Dy3+, Eu3+와 같은 희토류 이온의 좋은 모체 격자로 개발할 수 있다. 본 연구에서는 마그네슘 니오베이트 MgNb2O6 모체 결정에 다양한 활성제 이온, 즉 Eu3+, Sm3+, Dy3+, Tb3+를 선택적으로 주입하여 발광 효율이 높은 천연색 형광체를 합성하고자 한다. 특히, 모체 결정에 주입되는 활성제 이온 주위의 국소적인 환경이 반전 대칭에서 변형되는 척도를 조사하여 활성제의 주 발광 파장의 세기가 최대가 되는 최적의 조건을 결정하고자 한다. Mg1-1.5xNb2O6:REx3+ 형광체 분말 시료는 초기 물질 MgO, Nb2O5와 희토류 이온을 화학 반응식에 맞게 정밀 저울로 측량하여 플라스틱 용기에 ZrO2 볼과 함께 넣고, 소정의 에탄올을 채운 뒤 밀봉하고서, 300 rpm의 속도로 20시간 볼밀 (ball-mill) 작업을 수행하였다. 그 후, 체(sieve)로 ZrO2 볼을 걸러낸 다음에 혼합된 용액을 각 비커에 담아서 $40^{\circ}C$의 건조기에서 24시간 건조하였고, 건조된 시료를 막자 사발에 넣고 잘게 갈고 80 ${\mu}m$의 체로 걸러낸 후에, 알루미나 도가니에 활성제 이온별로 각각 담아, 전기로에 장입하여 매분당 $5^{\circ}C$의 비율로 온도를 상승시켜 $350^{\circ}C$에서 5시간 동안 하소 공정을 실시한 후에, 온도를 계속 일정한 율로 증가시켜 $1,200^{\circ}C$에서 5시간 동안 소성하여 합성하였다. 합성된 형광체 분말의 결정 구조는 $Cu-K{\alpha}$ 복사선(파장: 1.5406)을 사용하여 X-선회절장치로 측정하였으며, 형광체의 표면 형상은 전계형 주사전자현미경으로 관측하였다. 흡광와 발광스펙트럼은 제논 램프를 광원으로 갖는 형광 광도계를 사용하여 측정하였다. 모체 결정에 활성제 이온 Eu3+, Sm3+, Dy3+, Tb3+가 도핑된 형광체 분말은 각각 적색, 주황색, 황색, 녹색 발광이 관측되었다. 각 발광 스펙트럼과 결정 입자의 크기와 형상 사이의 상호 관계를 조사하였다. 실험 결과로부터, 각 형광체의 발광 파장은 활성제 이온의 종류 와 서로 밀접하게 관련되어 있으며, 형광체 시료 합성시 활성제 이온의 농도를 선택적으로 조절함으로써 발광의 세기를 제어할 수 있음을 확인하였다.

  • PDF

Relation between Leaching Characteristics of the positive Ions and Phosphate Removal by granular Converter Slag for the different Conditions and Concentrations of Phosphate (인산염 농도와 폐수조건 변화에 따른 입상 전로슬래그의 양이온 용출 특성과 인산염 제거의 관계에 관한 연구)

  • Lee, In-Gu;Lee, Sang-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.2
    • /
    • pp.372-379
    • /
    • 2007
  • The converter slag can be used to remove phosphate ion into the form of solid state from the wastewater. This research aims to evaluate the change of pH, alkalinity, leaching of positive ion in the wastewater and the removal of phosphate from the initial condition of wastewater. The change of pH was abruptly increased upto pH 11 for the initial condition of pH from 7.0 to 8.5 fer 0.5 unit of pH. The alkalinity was steadily increased from 10 hours of reaction time not same as pH increase. The removal of phosphate was very effective till 10 hours of reaction then it was slow after that time. The positive ion, magnesium ion was leached from the concentration of 2.0 mg/L to 4.3mg/L at the reaction time of 27 hours and 36 hours. Therefore, converter slag can be used to remove the phosphate in the form of Struvite from the wastewater.

  • PDF