• Title/Summary/Keyword: 이온전도성

Search Result 488, Processing Time 0.031 seconds

All-Solid-State Ion-Selective Electrodes With Organic Solvents Soluble Conducting Polymer for Chemical Sensor (화학센서를 위한 유기 용해성이 좋은 도전성 고분자가 포함된 전체 고체상태 이온 선택성 전극에 대한 연구)

  • Kim, Joong-Il;Park, Jong-Ho;Jang, Won;Heo, Min;Na, Young-Ho;Shin, Jae-Ho;Kim, Do-Young;Um, Hwan-Sub;Lee, Sang-Woo;Kim, In-Tae
    • Journal of the Korean Applied Science and Technology
    • /
    • v.30 no.2
    • /
    • pp.258-263
    • /
    • 2013
  • New conducting polymers containing heterocyclic ring with carbazole, EDOT and benzobisthiazole were synthesized and characterized by organic spectroscopic methods. Potentiometric ion-selective membrane electrodes (ISMEs) have been extensively used for ion analysis in clinical, environmental, and industeial fields owing to its wide response range (4 to 7 orders of magnitude), no effect of sample turbidity, fast response time, and ease of miniaturization. Considerable attention has been given to alternative use of room temperature vulcanizing (RTV)-type silicone rubber(SR) owing to its strong adhesion and high thermal durability. Unfortunately, the high membrane resistance of SR-based (ISMs)(2 to 3 higher orders of magnitude compared to those of poly(vinyl chloride)(PVC)-based ones) has significantly restricted its application. Herein we demonstrate a new method to reduce membrane resistance via addition of new conducting polymer into the SR-based ISMs.

Sintering of Na $\beta$"-Alumina-$ZrO_2$ and its Properties (Na$\beta$"-Alumina-$ZrO_2$의 소결 및 그 물성에 관한 연구)

  • Park, Sang-Myeon;Kim, Gyeong-Jae;Heo, Seung-Mu
    • Korean Journal of Materials Research
    • /
    • v.6 no.3
    • /
    • pp.297-304
    • /
    • 1996
  • 15 vol% ZrO2가 첨가된 Na $\beta$"-alumina 복합재를 1단계와 2단계 소결법을 사용하여 제조하였다. ZrO2는 효율적으로 Na $\beta$"-alumina에 비해 약 51%정도 증가하였으며 열처리 시간에 따른 Klc값의 큰 변화는 관찰되지 않았다. 그러나 이들 복합재의 굽힘 강도 값은 열처리 시간이 60분을 초과함에 따라 점차 감소하는 경향을 나타냈다. 2단계 소결법으로 제조한 Na 복합재의 전기 전도도는 1단계 소결법으로 제조된 시편과 달리 열처리 시간에 따른 전도도 값의 분산성이 거의 없었으며, 그 값은 다결정 Na $\beta$"-alumina의 전도도와 거의 동일하였다. Na 복합재 및 이온교환법에 의해 제조한 K 복합재의 전기전도도 값은 30$0^{\circ}C$에서 각각 1.3x 10-1과 5.9x20-2Scm-1로 측정되었다.2Scm-1로 측정되었다.

  • PDF

Adaptations and Physiological Characteristics of Three Chenopodiaceae Species under Saline Environments (명아주과 3종 식물의 염 환경에 대한 적응특성의 비교)

  • 송승달;김진아;추연식;배정진;김인숙;추보혜;이인중
    • The Korean Journal of Ecology
    • /
    • v.25 no.2
    • /
    • pp.101-107
    • /
    • 2002
  • Three species of Chenopodiaceae, i.e. Suaeda japonica, Salicomia herbacea, Beta vulgaris var. cicla, were investigated to compare the physiological characteristics through inoic balances and osmoregulations under different environmental salt gradients. Plats were harvested in two weeks from treatments with salt gradients (0, 50, 100, 200 and 400 mM NaCl) and mineral nutrition gradients(1/1, 1/5, 1/10 dilutions of Hoagland solution). Plants were analyzed for growth responses, ionic balances, osmolalities, conductivities, glycinebetaine and proline contents quantitatively. Three plants of Chenopodiaceae accumulated slats into tissues unlike some salt sensitive species, and showed unique adaptation patterns to overcome saline environments, i.e. strong growth stimulation for Salicomia herbacea, growth negative tolerance for Suaeda japonica, and growth positive tolerance for Beta vulgaris var. cicla. The absorption of inorganic Ca/sup 2+/ ions was inhibited remarkably due to the excess uptake of Na+ with increasing salinity. The K+ content in plants was significantly reduced with increasing salinity. Total nitrogen content was reduced as mineral nutritions and salinity increased. Conductivity and osmolality increased with increasing salinity regardless of mineral nutritions. The ranges of glycinebetaine and proline contents were 0.2∼2.5 μM/g plant water and 0.1∼0.6μM/g plant water, respectively.

Preparation and Characterization of the Impregnation to Porous Membranes with PVA/PSSA-MA for Fuel Cell Applications (연료전지 응용을 위한 다공성막에 친수성 고분자의 함침을 통한 고내구성 이온교환막의 제조 및 특성 연구)

  • Lee, Bo-Sung;Jung, Sun-Kyoung;Rhim, Ji-Won
    • Polymer(Korea)
    • /
    • v.35 no.4
    • /
    • pp.296-301
    • /
    • 2011
  • This study focuses on the investigation of the impregnation of poly (vinyl alcohol) (PVA) crosslinked with poly(styrene sulfonic acid-co-maleic acid) (PSSA-MA) to porous polyethylene membrane for the fuel cell application. The membranes were characterized by the measurements of the water content, contact angle, FTIR spectra, thermal gravimetric analysis, ion exchange capacity, proton conductivity, methanol permeability and elastic modulus. The existence of hydrophilic moieties in the impregnated membranes was confirmed by contact angle and FTIR measurements. The impregnated PVA/PSSAMA(90:10) membrane exhibited a higher ion exchange capacity (1.2 meq./g dry membrane) than Nafion membrane (0.91 meq./g dry membrane). Through the elastic modulus measurement, the dimensional stability of the resulting membranes was expected to increase higher than the polyethylene membranes. The methanol crossover and water content decreased even if the PSSA-MA content increased due to the reduction of the free volume.

Separator Properties of Silk-Woven Fabrics Coated with PVdF-HFP and Silica and the Charge-Discharge Characteristics of Lithium-ion Batteries Adopting Them (PVdF-HFP와 실리카가 코팅된 실크 견직물의 분리막 특성과 이를 채용한 리튬이온전지의 충방전 특성)

  • Oh, Seem Geon;Lee, Young-Gi;Kim, Kwang Man;Lee, Yong Min;Kim, Sang Hern;Kim, Yong Joo;Ko, Jang Myoun
    • Korean Chemical Engineering Research
    • /
    • v.51 no.3
    • /
    • pp.330-334
    • /
    • 2013
  • Mixtures of poly(vinylidene fluoride-co-hexafluoropropylene) (PVdF-HFP) and silica nanoparticles are coated on the surface of a silk fabrics separator. The coated separators are finally prepared by injecting an electrolyte solution and then characterized for use of lithium-ion battery separator/electrolyte. In the preparation, various contents of dibutylphthalate (DBP) as a plasticizer are used to enhance the formation of micropores within the coated membrane. The coated silk fabrics separators are characterized in terms of ionic conductivity, drenching rate, and electrochemical stability, and the charge-discharge profiles of lithium-ion batteries adopting the coated separators are also examined. As a result, the coated silk fabrics separator prepared using DBP 40~50 wt% and silica shows the superior separator properties and high-rate capability. This is due to (i) high sustainability of silk fabrics, (ii) the formation of micropores with the coated layer membrane by DBP, (iii) increase in drenching rate by silica nanoparticles to involve great enhancements in specific surface area and ionic conductivity.

Hydrophilic Treatment of Porous Substrates for Pore-Filling Membranes (세공충진막을 위한 다공성 지지체 친수화 처리)

  • Dahye Jeong;Minyoung Lee;Jong-Hyeok Park;Yeri Park;Jin-Soo Park
    • Journal of the Korean Electrochemical Society
    • /
    • v.26 no.4
    • /
    • pp.71-79
    • /
    • 2023
  • In this study, we employed anionic, cationic, and nonionic surfactants for the hydrophilization of porous substrates used in the fabrication of pore-filling membranes. We investigated the extent of hydrophilization based on the type of surfactant, its concentration, and immersion time. Furthermore, we used the hydrophilized substrates to produce pore-filling anion exchange membranes and compared their ion conductivity to determine the optimal hydrophilization conditions. For the ionic surfactants used in this study, we observed that hydrophilization progressed rapidly from the beginning of immersion when the applied concentration was 3.0 wt%, compared to lower concentrations (0.05, 0.5, and 1.0 wt%). In contrast, for the relatively larger molecular weight non-ionic surfactants, smooth hydrophilization was not observed. There was no apparent correlation between the degree of hydrophilization and the ion conductivity of the anion exchange membrane. This discrepancy suggests that an excessive hydrophilization process during the treatment of porous substrates leads to excessive adsorption of the surfactant on the sparse surfaces of the porous substrate, resulting in a significant reduction in porosity and subsequently decreasing the content of polymer electrolyte capable of ion exchange, thereby greatly increasing the electrical resistance of the membrane.

Sulfonated poly(arylene ether copolymer)-g-sulfonated Polystyrene Membrane Prepared Via E-beam Irradiation and Their Saline Water Electrolysis Application (전자빔조사를 이용한 술폰화 폴리아릴렌 에테르 술폰-g-술폰화 폴리스틸렌 분리막 제조 및 염수전기분해 특성평가)

  • Cha, Woo Ju;Lee, Chang Hyun
    • Membrane Journal
    • /
    • v.26 no.6
    • /
    • pp.458-462
    • /
    • 2016
  • Saline water electrolysis, known as chlor-alkali (CA) membrane process, is an electrochemical process to generate valued chemicals such as chlorine, hydrogen and sodium hydroxide with high purities higher than 99%, using an electrolytic cell composed of cation exchange membrane, anode and cathode. It is necessary to reduce energy consumption per a unit chemical production. This issue can be solved by decreasing intrinsic resistance of the membrane and the electrodes and/or by reducing their interfacial resistance. In this study, the electron radiation grafting of a $Na^+$ ion-selective polymer was conducted onto a hydrocarbon sulfonated ionomer membrane with high chemical resistance. This approach was effective in improving electrochemical efficiency via the synergistic effect of relatively fast $Na^+$ ion conduction and reduced interfacial resistance.

Comparative Study on the Mixed Micellizations of Anionic Surfactant (DBS) with Nonionic Surfactnats (Brij 30 and Brij 35) (음이온성 계면활성제(DBS)와 비이온성 계면활성제(Brij 30과 Brij 35)와의 혼합미셀화에 대한 비교연구)

  • Park, In-Jung;Lee, Byung-Hwan
    • Journal of the Korean Chemical Society
    • /
    • v.53 no.5
    • /
    • pp.491-498
    • /
    • 2009
  • The critical micelle concentration (CMC) and the counter ion binding constant (B) for the mixed micellizations of DBS (sodium dodecylbenzenesulfonate) with Brij 30 (polyoxyethylene(4) lauryl ether) and Brij 35 (polyoxyethylene (23) lauryl ehter) at 25 ${^{\circ}C}$ in pure water and in aqueous solutions of n-butanol were determined as a function of $\alpha$1 (the overall mole fraction of DBS) by the use of electric conductivity method. Various thermodynamic parameters (Xi, $\gamma$i, Ci, aiM, $\beta$, and ${\Delta}H_{mix}$) were calculated and compared for each mixed surfactant system by means of the equations derived from the nonideal mixed micellar model. There sults show that the molecules of DBS interact more strongly with Brij 35 than Brij 30 and that the DBS/Brij35 mixed system has greater negative deviation from the ideal mixed micellar model than the DBS/Brij 30mixed system.

Ionic Conductivity of $Li_2O-B_2O_3-P_2O_5$ based Glasses ($Li_2O-B_2O_3-P_2O_5$계 유리의 이온전도성)

  • 박강석;강은태
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.5
    • /
    • pp.373-380
    • /
    • 1993
  • Li2O-B2O3-P2O5 glasses with high lithium content were analysed by electrical characterization. The electrical conductivity increase with Li content and exhibits a maximum value of 1.2$\times$10-4S/cm near B2O3/P2O5=1 at 15$0^{\circ}C$. Glass transitiion temperature increased with conductivity. Concentration of charge carrier and distribution of relaxation time were independent of temperature. In this system the variation of conductivity with the composition was depend on mobility of lithium ion. Basically, it is attribute to primitive activation energy. Enhancement of conductivities was related to be formation of (B-O-P)-, di-, and metaborate group, which give additional available sites for Li+ diffusion.

  • PDF

Preparation of $Li_2O-ZrO_2-P_2O_5-SiO_2$ based Glassy Solid Electrolytes by Sol-Gel Process and Their Ionic Conduction (솔-젤법에 의한 $Li_2O-ZrO_2-P_2O_5-SiO_2$계 유리 고체전해질의 제조와 그의 이온전도성)

  • 박강석;김기원;강은태
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.6
    • /
    • pp.660-670
    • /
    • 1994
  • Transparent, crack-free dried gel monoliths with a composition of LiZr1.5Si2P2O12.5 have been synthesized by the low temperature polymerization of the Sol-Gel technique using metal alkoxides as starting materials. After initial reaction (20~40 min), each metal alkoxide closely paralleled each other during the hydrolysis reactions. The safe drying conditions of gels with no creaks the control of the shrinkage rate. The gels converted into the glass by heat treatment at 75$0^{\circ}C$. FTIR data indicated that the gels were phase separated into silicarich and phosphate-rich regions with the lithium. XRD results showed the formation of crystalline LiH2PO4. The gels dried at 15$0^{\circ}C$ or fired at 75$0^{\circ}C$ contained the residual water. The high ionic conductivity at room temperature for these gels was attributed to the motion of protons.

  • PDF