• Title/Summary/Keyword: 이온전도성

Search Result 488, Processing Time 0.028 seconds

Water Soluble Ionic Components in Precipitation at ChungNam West-Coast Area (충남 서해안지역 강수 중 수용성 이온 성분의 변화특성)

  • 정진도;이천호
    • Journal of Environmental Science International
    • /
    • v.12 no.12
    • /
    • pp.1285-1292
    • /
    • 2003
  • This study was compared each ingredient's local/seasonal change characteristics by analyzing anions and cations, watersoluble ionic components, from the precipitation of Dangjin and Anmyeon-do areas. The samples were collected for 8 months from both spots between the period of April 1, 2002 to November 31, 2002. The precipitation samples were collected continuously through the entire duration of precipitation by using the wet-only automatic samplers. When rain continues to fall over 24 hours or occasionally, we considered those collected from 9 o'clock in the morning for 24 hours as the day's samples. As a method to verify for the reliability of the analyzed data is concerned, we use the ion balance method and the electricity conductance method, was used widely as a way of watching the atmosphere by the WMO(World Meteorological Organization)/GAW (Global Atmosphere Watch). Also, Dangjin and Anmyun-do area confirmed that contains artificial pollutants by analysis of ion concentration data.

분산형 발전시스템의 기술개발 동향 - 고체산화물 연료전지 발전시스템 기술개발 동향

  • Lee, Yeong-Deok;Gang, Sang-Gyu;Lee, Sang-Min;An, Guk-Yeong
    • 기계와재료
    • /
    • v.26 no.1
    • /
    • pp.16-26
    • /
    • 2014
  • 고체 산화물 연료전지는 세라믹 소재의 이온전도성 막과 전극에서의 전기화학반응을 이용하여 전력을 생산하는 장치로서 발전효율이 높고, 배출물 특성이 우수하여 미래형 청정발전기술로 각광받는 기술이다. 더불어 소음이 적게 발생하므로 주로 도심지 건물에 설치되는 분산형 발전시스템으로서 장점을 가지고 있다. 본 동향분석에서는 고체산화물 연료전지 시스템의 개발동향을 살펴보고, 시스템별 사이클 구성방법에 대한 기술적인 차이점을 비교-분석하였다.

  • PDF

Electrohydrodynamically Driven Printing of Copper Ion Based Solution (구리 이온 용액의 전기수력학적 프린팅)

  • Song, Yeong-Seop;Choe, Seung-Mok;Lee, Ju-Yeol;Lee, Gyu-Hwan;Im, Jae-Hong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2013.05a
    • /
    • pp.164-164
    • /
    • 2013
  • 전기수력학을 이용한 프린팅 기술은 마이크로 나노 크기의 프린팅에 효과적으로 응용되고 있으며, 전도성 입자의 인쇄를 통한 미세 전기 배선의 형성에도 사용되고 있다. 본 연구에서는 금속 고체 입자를 사용하지 않고, 금속 이온 기반의 용액을 제조하여 마이크로 크기의 패턴을 형성하였다.

  • PDF

Polymer/Inorganic Nanohybrid Membrane on Lithium Metal Electrode: Effective Control of Surficial Growth of Lithium Layer and Its Improved Electrochemical Performance (리튬 금속 전극상 고분자/무기물 나노복합막 형성: 리튬층의 효과적 표면성장 제어 및 전기화학적 특성 향상)

  • Jeong, Yohan;Seok, Dohyeong;Lee, Sanghyun;Shin, Weon Ho;Sohn, Hiesang
    • Membrane Journal
    • /
    • v.30 no.1
    • /
    • pp.30-37
    • /
    • 2020
  • Polymer/inorganic composites were used as a protective layer of lihitum metal electrode for effective suppression of lithium dendrite. PVDF-HFP was used as an polymer material and TiO2 nanoparticle was used as an inorganic material. PVDF-HFP is a highly flexible polymer that acts as a matrix of inorganic materials while TiO2 nanoparticle improves the mechanical strength and ion conductivity of the protective layer. The as-synthesized protective hybrid membrane exhibited good dispersion of TiO2 in the PVDF-HFP matrix by SEM, AFM and XRD analyses. Furthermore, the electrochemical analysis showed that the polymer-inorganic composite retained high coulombic efficiency of 80% and low overpotential, less than 20 mV until the 100th cycles due to the improved mechanical properties and ion conductivity in comparison to the control sample (untreated and PVDF-HFP polymers/Cu).

Application of Ionic Liquids in Biotechnology (생물공학에서 이온성 액체의 응용)

  • Lee Sang-Mok;Chang Woo-Jin;Koo Yoon-Mo
    • KSBB Journal
    • /
    • v.20 no.3
    • /
    • pp.183-191
    • /
    • 2005
  • Ionic liquids, composed of organic cations and either organic or inorganic anions remain liquid over a wide range of temperature. ionic liquids are a new group of solvents or extractants of great interest as a potential 'green solvent'. Ionic liquids are gaining wide recognition as novel solvents in many research fields, such as chemistry, chemical engineering, electrochemitry, etc. However, not much researches have been done related to biotechnology using ionic liquids, while a lot of researches have been performed in chemistry. The merits of ionic liquids in bioseparation technology are originated from some unique properties of ionic liquids, such as negligible vapor pressure, good thermal stability, controllable viscosity and miscibility with water and organic solvents. An appropriate selection of ionic liquid for bioprocesses requires basic knowledge on physicochemical properties of ionic liquids. This review gives a brief overview on the application of ionic liquids in biotechnology, including bioconversion and bioseparation.

Conduction Path Dependent Threshold Voltage for the Ratio of Top and Bottom Oxide Thickness of Asymmetric Double Gate MOSFET (비대칭 이중게이트 MOSFET의 상하단 산화막 두께비에 따른 전도중심에 대한 문턱전압 의존성)

  • Jung, Hakkee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.11
    • /
    • pp.2709-2714
    • /
    • 2014
  • This paper has analyzed the change of threshold voltage and conduction path for the ratio of top and bottom gate oxide thickness of asymmetric double gate MOSFET. The asymmetric double gate MOSFET has the advantage that the factor to be able to control the current in the subthreshold region increases. The analytical potential distribution is derived from Poisson's equation to analyze the threshold voltage and conduction path for the ratio of top and bottom gate oxide thickness. The Gaussian distribution function is used as charge distribution. This analytical potential distribution is used to derive off-current and subthreshold swing. By observing the results of threshold voltage and conduction path with parameters of bottom gate voltage, channel length and thickness, projected range and standard projected deviation, the threshold voltage greatly changed for the ratio of top and bottom gate oxide thickness. The threshold voltage changed for the ratio of channel length and thickness, not the absolute values of those, and it increased when conduction path moved toward top gate. The threshold voltage and conduction path changed more greatly for projected range than standard projected deviation.

The anisotropic of threshold energy of impact ionization for energy band structure on GaAs (GaAs 에너지밴드구조에 따른 임팩트이온화의 문턱에너지 이방성)

  • 정학기;고석웅;이종인
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 1999.05a
    • /
    • pp.389-393
    • /
    • 1999
  • The exact model of impact ionization events in which has influence on device efficiency, is to be necessary element for device simulation. Recently, a modified Keldysh formula with two set of power exponent of 7.8 and 5.6 is used to simulate carrier transport. This model is, however, not suitable as impact ionization model in low energy range since this ignore direction dependent properties of impact ionization. The impact ionization rate is highly anisotropic at low energy, while it becomes isotropic at higher energy range. Note that impact ionization events frequently occur in high energy range. For calculating impart ionization rate, we use full energy band structure derived from Fermi's golden rule and empirical pseudopotential method. We compare with calculated and experimental value, and investigate direction dependent conduction energy band structure along the direction of <100>, <110> and <111>. We know that the threshold energy of impact ionization is anisotropic and impact ionization rate is very deviated from modified Keldish formula, in relatively low energy range.

  • PDF

Performance Enhancement of Ion-Exchange Membranes Using Nanomaterials (나노물질을 이용한 이온교환막의 성능 향상)

  • Moon-Sung Kang
    • Membrane Journal
    • /
    • v.33 no.6
    • /
    • pp.315-324
    • /
    • 2023
  • Ion-exchange membrane (IEM), is a key component that determines the performance of the electro-membrane processes. In this review, the latest research trends in improving the performance of IEMs used in various electro-membrane processes through modification using carbon-based and metal-based nanomaterials are investigated. The nanomaterials can be introduced into IEMs through various methods. In particular, carbon-based nanomaterials can strengthen their interaction with polymer chains by introducing additional functional groups through chemical modification. Through this, not only can the ion conductivity of IEM be improved, but also the permselectivity can be improved through the sieving effect through the layered structure. Meanwhile, metal-based nanomaterials can improve permselectivity through sieving properties using the difference in hydration radius between target ions and excluded ions within a membrane by using the property of having a layered or porous structure. In addition, depending on the characteristics of the binder used, ion conductivity can be improved through interaction between nanomaterials and binders. From this review, it can be seen that the properties of IEMs can be effectively controlled using carbon-based and metal-based nanomaterials and that research on this is important to greatly improve the performance of the electro-membrane process.