• 제목/요약/키워드: 이온성 액체 (ILs)

검색결과 23건 처리시간 0.021초

실리카겔에 고정화된 산성 이온성 액체 촉매를 이용한 올레산의 에스터화 반응연구 (The Esterification of Oleic Acid Using Acidic Ionic Liquid Catalysts Immobilized on Silica Gel)

  • 최재형;박용범;이석희;천재기;우희철
    • Korean Chemical Engineering Research
    • /
    • 제48권5호
    • /
    • pp.583-588
    • /
    • 2010
  • 유리지방산 함량이 높은 원료의 효율적인 바이오디젤 생산을 위해 다양한 고체산 촉매를 사용하여 회분식 반응기에서 유리지방산의 에스터화 반응에 대한 연구를 수행하였다. 고체산 촉매는 상용 촉매인 황산기를 지닌 이온교환수지(Amberlyst-15, Dowex 50Wx8)와 실리카겔에 술폰기 및 염화술폰기 지닌 산성 이온성 액체가 고정화된 촉매($SiO_2-[ASBI][HSO_4]$, $SiO_2-[ASCBI][HSO_4]$), 단순히 실리카겔에 술폰기 및 염화술폰기의 산성적 기능기를 도입한 촉매들을 사용하여 반응특성을 비교하였다. 또한 에스터화 반응 실험변수로써 반응시간, 온도, 반응물간의 몰 비율(메탄올:올레산), 촉매량에 대한 영향을 조사하였다. 사용된 고체산 촉매들 중 실리카겔에 고정화된 알릴이미다졸리움을 포함한 산성 이온성 액체 촉매가 가장 우수한 반응성을 나타내었다. 특히 실리카겔에 3-allyl-1-(4-sulfobutyl)imidazolium hydrogen sulfate가 고정화된 $SiO_2-[ASBI][HSO_4]$ 촉매가 같은 반응조건에서 기존의 알려진 Amberlyst-15보다 더 나은 성능을 보였으며, 353 K 반응온도와 5 wt%의 촉매량, 메탄올/올레산의 몰 비율 20의 조건에서 2시간 동안 약 96%의 높은 전환율을 나타내었다. $SiO_2-[ASBI][HSO_4]$의 높은 촉매 활성은 실리카에 고정화된 강한 브뢴스테드산의 작용기에 기인한 것으로 생각된다. 바이오디젤로부터 촉매의 분리 및 회수는 간단한 경사법 혹은 여과법에 의해 쉽게 분리할 수 있고, 이를 회수하여 재사용이 가능하다.

이산화탄소 분리를 위한 이온성 액체 기반 복합 멤브레인: 총설 (Ionic Liquid Consisted of Composite Membrane for Carbon Dioxide Separation: A Review)

  • 영 사이먼 시 영;라즈쿠마 파텔
    • 멤브레인
    • /
    • 제33권5호
    • /
    • pp.240-247
    • /
    • 2023
  • 가스 분리 방법 중에서도, 멤브레인을 이용한 CO2 포집 및 분리는 지속적으로 개발되고 있는 꾸준히 성장하는 분야이다. 이온성 액체(IL) 기반 복합 막은 CO2를 분리하는 데 있어 우수한 성능값을 보여준다. 유사하게, 다양한 공중합체/IL 복합막 또한 향상된 성능을 보여준다. 이러한 공중합체/IL 복합만에 산화그래핀과 같은 필러를 첨가하면 IL과 유기 필러 사이에서 발생하는 강한 상호작용으로 인해 필러의 효과가 더욱 향상되며, 이는 결과적으로 CO2의 친화도, 선택도 및 흡착과 같은 요소를 향상시킨다. 금속-유기 구조체(MOF)를 사용하는 공중합체/IL 복합 막은 향상된 CO2 투과도를 보여주었다. 이 총설에서는 이온성 액체와 공중합체복합막의 다양한 조합에 따른 이산화탄소분리성능에 대한 상관관계를 논의한다.

이온성 액체를 이용한 dodecanethiol로 안정화된 금속 나노입자 합성 (Synthesis of Dodecanethiol-Capped Nanoparticles Using Ionic Liquids)

  • 이영은;이성윤;유성식
    • Korean Chemical Engineering Research
    • /
    • 제50권5호
    • /
    • pp.795-801
    • /
    • 2012
  • 가장 널리 이용되고 있는 금속나노입자 중 금과 은을 친환경용매인 RTILs (room temperature ionic liquids)를 이용하여 제조하고자 하였다. 본연구에서는 두 종류의 이온성 액체, 즉 비수용성인 [BMIM][$PF_6$] (1-Butyl-3-methylimidazolium hexafluorophosphate)과 수용성인 [BMIM][Cl](1-Buthy-3-methylimdazolium chloride)를 이용하여 리간드로 안정화된 금속 나노입자를 제조하고자 하였다. 이 중 [BMIM][Cl]은 논연구에서 Dupont 등의 방법으로 직접 합성하여 물성 분석 후 사용하였으며, [BMIM][$PF_6$]은 완제품을 구입하여 사용하였다. 금과 은의 나노입자들을 습식으로 제조하는 경우의 Brust et al.[6]의 방법이 널리 알려져 있으며, 본 연구에서도 이를 기초로 하여 나노입자를 제조하였다. [BMIM][$PF_6$]로 나노입자 제조시는 이 용매가 물에 녹지 않으므로 기본적으로는 유기용매 대신 [BMIM][$PF_6$]를 사용하는 것 외에는 Brust 등과 같은 방법제조하였다. [BMIM][Cl]로 나노입자를 제조하는 경우는 이 용매가 수용성이므로 상전이제와 ethanol은 사용하지 않고 입자를 제조하였다. 이렇게 얻어진 나노입자들의 경우 [BMIM][$PF_6$]로 합성한 경우는 FT-IR, UV-vis, TEM 그리고 TGA 분석을 통하여 Brust 등이 합성한 경우와 유사한 결과를 얻었지만, [BMIM][Cl]의 경우는 형태학적으로 다른 나노입자를 얻었다. 기존의 나노입자를 제조하는 과정에서 이용되는 유기용매를 이용하는 방법을 그린용매인 이온성 액체로 대체할 수 있다는 가능성을 확인할 수 있었고, 이온성 액체의 특성에 따라서 형태학적으로 다른 입자를 얻을 수 있었으나, 이 부분은 추후 더 많은 연구가 필요하다.