DOI QR코드

DOI QR Code

Ionic Liquid Consisted of Composite Membrane for Carbon Dioxide Separation: A Review

이산화탄소 분리를 위한 이온성 액체 기반 복합 멤브레인: 총설

  • Young Simon Shi Young (Energy and Environmental Science and Engineering, Integrated Science and Engineering Division, Underwood International College, Yonsei University) ;
  • Rajkumar Patel (Energy and Environmental Science and Engineering, Integrated Science and Engineering Division, Underwood International College, Yonsei University)
  • 영 사이먼 시 영 (연세대학교 언더우드학부 융합과학공학부 에너지환경융합전공) ;
  • 라즈쿠마 파텔 (연세대학교 언더우드학부 융합과학공학부 에너지환경융합전공)
  • Received : 2023.08.19
  • Accepted : 2023.09.18
  • Published : 2023.10.31

Abstract

Even among gas separation methods, CO2 capture and separation via membranes is an ever-growing field, with many different membrane compositions continually being developed. Ionic liquid (IL) based composite membranes show excellent performance values in separating CO2. Similarly, various copolymer/IL composite membranes also display improved performance. The addition of fillers such as graphene oxide to these copolymer/IL composite membranes shows a further enhanced version of these fillers, most likely due to the strong interactions that occur between ILs and organic fillers, which consequently improves factors such as the affinity, selectivity, and adsorption of CO2. Copolymer/IL composite membranes utilizing a metal-organic framework (MOF) showed improved CO2 permeability. This review discusses the study of various combinations of ionic liquid and copolymer composite membranes for carbon dioxide separation.

가스 분리 방법 중에서도, 멤브레인을 이용한 CO2 포집 및 분리는 지속적으로 개발되고 있는 꾸준히 성장하는 분야이다. 이온성 액체(IL) 기반 복합 막은 CO2를 분리하는 데 있어 우수한 성능값을 보여준다. 유사하게, 다양한 공중합체/IL 복합막 또한 향상된 성능을 보여준다. 이러한 공중합체/IL 복합만에 산화그래핀과 같은 필러를 첨가하면 IL과 유기 필러 사이에서 발생하는 강한 상호작용으로 인해 필러의 효과가 더욱 향상되며, 이는 결과적으로 CO2의 친화도, 선택도 및 흡착과 같은 요소를 향상시킨다. 금속-유기 구조체(MOF)를 사용하는 공중합체/IL 복합 막은 향상된 CO2 투과도를 보여주었다. 이 총설에서는 이온성 액체와 공중합체복합막의 다양한 조합에 따른 이산화탄소분리성능에 대한 상관관계를 논의한다.

Keywords

References

  1. H. Lin and B. D. Freeman, "Materials selection guidelines for membranes that remove CO2 from gas mixtures", J. Mol. Struct., 739, 57 (2005). 
  2. M. Loloei, M. Omidkhah, A. Moghadassi, and A. E. Amooghin, "Preparation and characterization of Matrimid® 5218 based binary and ternary mixed matrix membranes for CO2 separation", Int. J. Greenh. Gas Control, 39, 225 (2015). 
  3. M. S. Park, J. H. Kim, and R. Patel, "PVA-based graft copolymer composite membrane synthesized by free-radical polymerization for CO2 gas separation", Membr. J., 31, 268 (2021). 
  4. M. Rezakazemi, A. Ebadi Amooghin, M. M. Montazer-Rahmati, A. F. Ismail, and T. Matsuura, "State-of-the-art membrane based CO2 separation using mixed matrix membranes (MMMs): An overview on current status and future directions", Prog. Polym. Sci., 39, 817 (2014). 
  5. H. Sanaeepur, A. Ebadi Amooghin, A. Moghadassi, A. Kargari, S. Moradi, and D. Ghanbari, "A novel acrylonitrile-butadiene-styrene/poly(ethylene glycol) membrane: preparation, characterization, and gas permeation study", Polym. Adv. Technol., 23, 1207 (2012). 
  6. S. Park and R. Patel, "Recent progress in conductive polymer-based membranes", Membr. J., 31, 101 (2021). 
  7. M. Zamani Pedram, M. Omidkhah, and A. Ebadi Amooghin, "Synthesis and characterization of diethanolamine-impregnated cross-linked polyvinyl-alcohol/glutaraldehyde membranes for CO2/CH4 separation", J. Ind. Eng. Chem., 20, 74 (2014). 
  8. H. Rabiee, A. Ghadimi, and T. Mohammadi, "Gas transport properties of reverse-selective poly(ether-b-amide6)/[Emim][BF4] gel membranes for CO2/light gases separation", J. Membr. Sci., 476, 286 (2015). 
  9. S. Tachibana, K. Hashimoto, H. Mizuno, K. Ueno, and M. Watanabe, "Effects of polyimide sequence and monomer structures on CO2 permeation and mechanical properties of sulfonated polyimide/ionic liquid composite membranes", Polymer, 241, 124533 (2022). 
  10. M. Barooah and B. Mandal, "Synthesis, characterization and CO2 separation performance of novel PVA/PG/ZIF-8 mixed matrix membrane", J. Membr. Sci., 572, 198 (2019). 
  11. Y. Y. Lee and B. Gurkan, "Graphene oxide reinforced facilitated transport membrane with poly (ionic liquid) and ionic liquid carriers for CO2/N2 separation", J. Membr. Sci., 638, 119652 (2021). 
  12. A. Ebadi Amooghin, M. Omidkhah, and A. Kargari, "The effects of aminosilane grafting on NaY zeolite-Matrimid®5218 mixed matrix membranes for CO2/CH4 separation", J. Membr. Sci., 490, 364 (2015). 
  13. A. Ebadi Amooghin, M. Omidkhah, and A. Kargari, "Enhanced CO2 transport properties of membranes by embedding nano-porous zeolite particles into Matrimid®5218 matrix", RSC Adv., 5, 8552 (2015). 
  14. M.-T. Vu, R. Lin, H. Diao, Z. Zhu, S. K. Bhatia, S. Smart, "Effect of ionic liquids (ILs) on MOFs/polymer interfacial enhancement in mixed matrix membranes", J. Membr. Sci., 587, 117157 (2019). 
  15. E. Hayashi, M. L. Thomas, K. Hashimoto, S. Tsuzuki, A. Ito, and M. Watanabe, "Application of protic ionic liquids to CO2 separation in a sulfonated polyimide-derived ion gel membrane", ACS Appl. Polymer Mat., 1, 1579 (2019). 
  16. H. Y. Kim and S. W. Kang, "CO2 separation using composites consisting of 1-butyl-3-methylimidazolium tetrafluoroborate/CdO/1-aminopyridinium iodide", Sci. Rep., 9, 16563 (2019). 
  17. E. Hayashi, K. Hashimoto, M. L. Thomas, S. Tsuzuki, and M. Watanabe, "Role of cation structure in CO2 separation by ionic liquid/sulfonated polyimide composite membrane", Membranes, 9, 81 (2019). 
  18. Y. Cheng, X. Zhang, C. Yin, J. Zhang, J. Yu, and J. Zhang, "Immobilization of ionic liquids with a new cellulose ester containing imidazolium cation for high-performance CO2 separation membranes", Macromol. Rapid Commun., 42, 2000494 (2021). 
  19. Z. Dai, L. Ansaloni, J. J. Ryan, R. J. Spontak, and L. Deng, "Nafion/IL hybrid membranes with tuned nanostructure for enhanced CO2 separation: Effects of ionic liquid and water vapor", Green Chem., 20, 1391 (2018). 
  20. E. Ghasemi Estahbanati, M. Omidkhah, and A. Ebadi Amooghin, "Preparation and characterization of novel Ionic liquid/Pebax membranes for efficient CO2/light gases separation", J. Ind. Eng. Chem., 51, 77 (2017). 
  21. S. C. Lu, A. L. Khan, and I. F. J. Vankelecom, "Polysulfone-ionic liquid based membranes for CO2/N2 separation with tunable porous surface features", J. Membr. Sci., 518, 10 (2016). 
  22. W. Fam, J. Mansouri, H. Li, J. Hou, and V. Chen, "Gelled graphene oxide-ionic liquid composite membranes with enriched ionic liquid surfaces for improved CO2 separation", ACS Appl. Mater. Interfaces, 10, 7389 (2018). 
  23. G. Huang, A.P. Isfahani, A. Muchtar, K. Sakurai, B. B. Shrestha, D. Qin, D. Yamaguchi, E. Sivaniah, and B. Ghalei, "Pebax/ionic liquid modified graphene oxide mixed matrix membranes for enhanced CO2 capture", J. Membr. Sci., 565, 370 (2018). 
  24. M. Karunakaran, L. F. Villalobos, M. Kumar, R. Shevate, F. H. Akhtar, and K. V. Peinemann, "Graphene oxide doped ionic liquid ultrathin composite membranes for efficient CO2 capture", J. Mater. Chem. A, 5, 649 (2017). 
  25. M. Wu, X. Song, X. Zhang, C. Jiao, and H. Jiang, "A reduced pressure-assisted vapor penetration of ionic liquid into the laminated graphene oxide membranes for efficient CO2 separation", Sep. Purif. Technol., 287, 120514 (2022). 
  26. C. Casado-Coterillo, A. Fernandez-Barquin, B. Zornoza, C. Tellez, J. Coronas, and A. Irabien, "Synthesis and characterisation of MOF/ionic liquid/chitosan mixed matrix membranes for CO2/N2 separation", RSC Adv., 5, 102350 (2015). 
  27. L. Hao, P. Li, T. Yang, and T. S. Chung, "Room temperature ionic liquid/ZIF-8 mixed-matrix membranes for natural gas sweetening and post-combustion CO2 capture", J. Membr. Sci., 436, 221 (2013). 
  28. H. Li, L. Tuo, K. Yang, H. K. Jeong, Y. Dai, G. He, W. Zhao, "Simultaneous enhancement of mechanical properties and CO2 selectivity of ZIF-8 mixed matrix membranes: Interfacial toughening effect of ionic liquid", J. Membr. Sci., 511, 130 (2016).