DOI QR코드

DOI QR Code

Synthesis of Dodecanethiol-Capped Nanoparticles Using Ionic Liquids

이온성 액체를 이용한 dodecanethiol로 안정화된 금속 나노입자 합성

  • Lee, Young-Eun (School of Energy, Materials, Chemical engineering, Korea Univ. of Tech. and Edu.) ;
  • Lee, Seong-Yun (School of Energy, Materials, Chemical engineering, Korea Univ. of Tech. and Edu.) ;
  • You, Seong-Sik (School of Energy, Materials, Chemical engineering, Korea Univ. of Tech. and Edu.)
  • 이영은 (한국기술교육대학교 에너지.신소재.화학공학부) ;
  • 이성윤 (한국기술교육대학교 에너지.신소재.화학공학부) ;
  • 유성식 (한국기술교육대학교 에너지.신소재.화학공학부)
  • Received : 2012.05.29
  • Accepted : 2012.07.05
  • Published : 2012.10.01

Abstract

Nanoparticles have received significant attention because of their unusual characteristics including high surface area to volume ratios. Thiol ligand have been used as stabilizers of metal nanoparticles since Brust et al. They reported the preparation method of ligand capped metal nanoparticles by protecting the nanoparticles with a self-assembled monolayer of dodecanethiolate. In this method, volatile organic compounds (VOCs) were used as sovents. This study was carried out to replace these VOCs with room temperature ionic liquids (RTILs). We used two type of ILs to prepare metal nanoparticles. One is a hydrophobic IL, [BMIM][[$PF_6$] (1-Butyl-3-methylimidazolium hexafluorophosphate) purchased from IL maker, C-Tri from Korea and the other one is a hydrophilic one, [BMIM][Cl] (1-Buthy-3-methylimdazolium chloride) sinthesized by us. In the case of preparing Ag and Au nanoparticles using [BMIM][Cl], we didn't use phase transition reagents and ethanol because it has hydrophilic property and preparing Au, Ag nanoparticles using [BMIM][[$PF_6$] the method is as same as Brust et al.'s except using [BMIM][[$PF_6$] instead of organic solvent because it has hydrophobic property. FT-IR and UV-vis, TEM, TGA analysis have been used in an attempt to determine the particle size and verify functional groups. The particle size obtained from TEM was very similar to those obtained by Brust et al. This is a clear example of ligand capped metal nanoparticles prepared using ionic liquids. And the experimental result demonstrated ionic liquids can act as a highly effective medium for the preparation and stabilization of gold and silver metal nanoparticles.

가장 널리 이용되고 있는 금속나노입자 중 금과 은을 친환경용매인 RTILs (room temperature ionic liquids)를 이용하여 제조하고자 하였다. 본연구에서는 두 종류의 이온성 액체, 즉 비수용성인 [BMIM][$PF_6$] (1-Butyl-3-methylimidazolium hexafluorophosphate)과 수용성인 [BMIM][Cl](1-Buthy-3-methylimdazolium chloride)를 이용하여 리간드로 안정화된 금속 나노입자를 제조하고자 하였다. 이 중 [BMIM][Cl]은 논연구에서 Dupont 등의 방법으로 직접 합성하여 물성 분석 후 사용하였으며, [BMIM][$PF_6$]은 완제품을 구입하여 사용하였다. 금과 은의 나노입자들을 습식으로 제조하는 경우의 Brust et al.[6]의 방법이 널리 알려져 있으며, 본 연구에서도 이를 기초로 하여 나노입자를 제조하였다. [BMIM][$PF_6$]로 나노입자 제조시는 이 용매가 물에 녹지 않으므로 기본적으로는 유기용매 대신 [BMIM][$PF_6$]를 사용하는 것 외에는 Brust 등과 같은 방법제조하였다. [BMIM][Cl]로 나노입자를 제조하는 경우는 이 용매가 수용성이므로 상전이제와 ethanol은 사용하지 않고 입자를 제조하였다. 이렇게 얻어진 나노입자들의 경우 [BMIM][$PF_6$]로 합성한 경우는 FT-IR, UV-vis, TEM 그리고 TGA 분석을 통하여 Brust 등이 합성한 경우와 유사한 결과를 얻었지만, [BMIM][Cl]의 경우는 형태학적으로 다른 나노입자를 얻었다. 기존의 나노입자를 제조하는 과정에서 이용되는 유기용매를 이용하는 방법을 그린용매인 이온성 액체로 대체할 수 있다는 가능성을 확인할 수 있었고, 이온성 액체의 특성에 따라서 형태학적으로 다른 입자를 얻을 수 있었으나, 이 부분은 추후 더 많은 연구가 필요하다.

Keywords

References

  1. Park, H. S., "Development of Green Nanotechnology using Ionic Liquids," NICE, 28(3), 2010.
  2. Lee, H., Lee, J. S., Ahn, B. S. and Kim, H. S., "Technology Trend in Ionic Liquids," J. Korean Ind. Eng. Chem., 16(5), 595-602 (2005).
  3. Kim, K.-S., Demberelnyamba, D. and Lee, H., "Size-Sekective Synthesis of Gold and Platinum Nanoparticles Using Novel Thilo- Functionalized Ionic Liquids," Langmuir, 20(3), 556-560(2004). https://doi.org/10.1021/la0355848
  4. Kim, H. S. and Y. J. Kim, "Ionic Liquids as a Green Solvent for Next Generation," NICE, 21(2), 2003.
  5. Lee, H., Lee, J. S. and Kim, H. S., "Application of Ionic Liquids: The State of Arts," Appl. Chem. Eng., 21(2), 129-136(2010).
  6. Oh, S. Y., J. W. Kang, B. H. Park and K.-S. Kim, "Physical and Thermodynamic Properties of Imidazolium Ionic Liquids," Korean Chem. Eng. Res.(HWAHAK KONGHAK), 50, 708-712(2012). https://doi.org/10.9713/kcer.2012.50.4.708
  7. Cha, J. H., Kim, K. S. and Lee, H., "Size-selective Pd Nanoparticles Stabilized by Dialkylmorpholinium Ionic Liquids," Korean J. Chem. Eng., 26, 760-764(2009). https://doi.org/10.1007/s11814-009-0127-5
  8. Brust, M. and Walker, M., "Synthesis of Thiol-derivatized Gold Nanoparticles in a Two-phase Liquid-liquid System," J. Chem. Soc., Chem. Commun., 7, 801-802(1994).
  9. Dupont, J., Consorti, C. S., Suarez, P. A. Z. and de Souza, R. F., "Preparation of 1-butyl-3-methyl imidazolium based Room temperature Ionic Liquids," Organi Syntheses, 79, 236-243(2003).
  10. Brust, M., Fink, J., Bethell, D., Schiffrin, D. J. and Kiely, C. J., "Synthesis and Reactions of Functionalised Gold Nanoparticles," Chem. Soc., Chem. Commun., 16, 1655(1995).
  11. Khatri, O. P., Adachi, K. and Murase, K., "Self-Assembly of Ionic Liquid-Stabilized Gold Nanoparticles on a Silicon Surface: Chemical and Structural Aspects," Langmuir, 24, 7785-7792(2008). https://doi.org/10.1021/la800678m
  12. Liu, J., Sutton, J. and Roberts, C. B., "Synthesis and Extraction of Monodispere Sodium Carboxymethylcellulose-Stabilized Platinum Nanoparticles for the Self-assembly of Ordered Arrays," J. Phys. Chem. C, 111(31), 11566-11576(2007). https://doi.org/10.1021/jp071967t
  13. Jonathan, G., Heather, D. H., Richard, W., Swatloski, P., Visser- Robin, A. E. and Rogers, D., "Characterization and Comparison of Hydrophilic and Hydrophobic Room Temperature Ionic Liquids Incorporating the Imidazolium Cation," Green Chem., 3, 156-164(2001). https://doi.org/10.1039/b103275p
  14. Kim, K.-S., Shin, B.-K. and Lee, H., "Physical and Electrochemical Properties of 1-Butyl-3-methylimidazolium Bromide, 1-Butyl-3-methylimidazolium Iodide, 1-Butyl-3-methyl-imidazolium Tetrafluoroborate," Korean J. Chem. Eng., 21(5), 1010-1014 (2004). https://doi.org/10.1007/BF02705586
  15. Ghatee, M. H. and Zolghadr, A. R., "Surface Tension Measurements of Imidazolium-based Ionic Liquids at Liquid-vapor Equilibrium," Fluid Phase Equilib., 263(2), 168-175(2008). https://doi.org/10.1016/j.fluid.2007.10.004
  16. Sidhaye, D. S. and Prasad, B. L. V., "Melting Characteristics of Superlattices of Alkanethiol-Capped Gold Nanoparticles: The Excluded Story of Excess Thiol," Chem. Mater., 22(5), 1680- 1685(2010). https://doi.org/10.1021/cm9031607
  17. Anand, M. and McLeod, M. C., "Tunable Solvation Effects on the Size-Selective Fractionation of Metal Nanoparticles in $CO_{2}$ Gas-Expanded Solvents," J. Phys. Chem. B, 109(48), 22852-22859 (2005). https://doi.org/10.1021/jp0547008
  18. Safavi, A. and Zeinali, S., "Synthesis of Highly Stable Gold Nanooparticle Using Conventional and Geminal Ionic Liquids," Physicochem. Eng. Aspects, 362, 121-126(2010). https://doi.org/10.1016/j.colsurfa.2010.04.002
  19. Lee, J. K., Park, K. J. and Seo, D. S., "Preparation of Rod-like Ag Particle Using Surfactant," J. Kitech, 27, 93-98(2005).
  20. Park, H. S., Choi, B. G. and Hong, W. H., "Iosothermal Synthesis of 1D and 3D-Shaped Ionic Liquid-Aluminum Hydroxide Hybrids for Electrochemical Device," Appl. Chem., 11(1), 117- 120(2007).