• Title/Summary/Keyword: 이송 회전 속도

Search Result 65, Processing Time 0.029 seconds

Machining characteristics of micro end-mill using high revolution (고속회전을 이용한 마이크로 엔드밀의 가공특성)

  • Kim, Kisoo;Kim, Sangjin;Cho, Byoungmoo;Kim, Hyeungchul
    • 대한공업교육학회지
    • /
    • v.31 no.2
    • /
    • pp.350-363
    • /
    • 2006
  • Recently, the micro end-milling processing is demanded the high-precise technique with good surface roughness and rapid time in milli-structure parts, micro machine parts and molding industry. The cutting conditions of micro end-milling has an effect on surface roughness of cutting surface. Therefore this study was carried out to cut stainless steel using high revolution air bearing spindle and micro end-mill and analyze the cutting condition to get the optimum surface roughness by design of experiment. From this study, surface roughness have an much effect according to priority on depth of cut, revolution of spindle and feed.

A study on the capability of edge shape milling tool with the operatio parameters of equipment (장비운영요소변화에 따른 석재측면 성형공구의 성능시험 연구)

  • 선우춘
    • Tunnel and Underground Space
    • /
    • v.8 no.4
    • /
    • pp.332-341
    • /
    • 1998
  • Conventional polishing of stone panel edges has been done by hand. While this has changed somewhat with the advent of automatic machines, it is still very much a hand finishing technology. For the development of edge shape milling tool, the primary test on characteristics of edge shape milling tool was carried out. This paper presents the results of tests focused upon the milling capability that was varied by the variables of operation parameters. Author tried to confirm the effect of six operation parameters of equipment such as rotation speed, advance speed, applied load, water flow rate and rotational direction. The result from test was described in term of shape milling capability that was defined as cutting volume of rock by unit weight of tool wear. The variance of the results could indicate the optimum level of each operating parameters. The test was also carried out to determine the abrasion resistance varied according to the abrasive flow rate. The abrasion resistance was increased with the abrasive flow rate, but over some rate it was not changed.

  • PDF

A Study on Characteristics of Cutting Tool Wear by Cooling Method in Rough Machining of Titanium Alloy (티타늄합금 황삭가공에서 냉각방법에 따른 절삭공구 마모특성에 관한 연구)

  • Kim, Gee-Hah
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.5
    • /
    • pp.129-134
    • /
    • 2013
  • Titanium used in industry has been widely applied for aerospace important parts and automobile important parts, etc. because the titanium is higher in strength compared to the steel and light in weight compared to the steel. This study is to investigate the effect of cutting tool cooling method and cutting time on the spindle speed and feed rate of vertical machining center as a parameter to find the rough cutting time in the medium speed cutting machining of the titanium alloy. It is found that the cutting machining heat are increased as the feed rate, cutting time and spindle speed are raised.

The Effects of Chatter on the Machined Surface during Ball-endmilling (볼 엔드밀 가공시 채터가 가공면에 미치는 영향)

  • Park, Chun-Woo;Hong, Nam-Pyo;Kim, Byeong-Hee
    • Journal of Industrial Technology
    • /
    • v.21 no.A
    • /
    • pp.27-32
    • /
    • 2001
  • This paper deals with the study on the culling characteristics in ball-end milling process. First of all, the effects of the geometric cutting conditions such as the spindle speed, feedrates on the surface integrity and machining stability were evaluated by the analytical and the experimental approaches. A large amount of experimental sets are performed to evaluate the effects of chatter phenomenon on the machined surface. The optical microscope and the surface roughness measuring machine are used to measure the surface integrity and roughness of the machined surfaces.

  • PDF

A Study on Characteristics of Cutting by Cutting Conditions in Titanium Machining (티타늄 가공의 절삭조건에 따른 가공특성에 관한 연구)

  • Kim, Gee-Hah
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.1
    • /
    • pp.84-89
    • /
    • 2013
  • Titanium used in industry has been widely applied for aerospace engine, structures and spacecraft exterior, etc. because the titanium is higher in strength compared to the steel and light in weight compared to the steel. This study is to investigate the effect of cutting depth and cutting time on the spindle speed and feed rate of vertical machining center as a parameter to find the rough cutting time and cutting depth in the medium speed cutting machining of the titanium alloy. It is found that the cutting machining heat are increased as the cutting depth, feed rate, cutting time and spindle speed are raised.

고순도게르마늄(HPGe) 검출기를 이용한 방사성폐기물 드럼의 핵종농도 평가

  • 박경록;강덕원
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.11b
    • /
    • pp.583-589
    • /
    • 1996
  • 원자력발전소에서 발생되는 방사성폐기물들은 폐기물형태 및 방사능 농도가 다양하며 영구처분장으로 이송전까지는 발전소내의 임시 저장고에 안전하게 보관, 관리하고 있다. 생성된 폐기물드럼내에는 감마방출핵종을 비롯하여 알파 및 베타방출 핵종들이 균질 또는 비균질하게 존재하고 있으며 방사능의 세기나 폐기물의 특성에 따라 안정화시키거나 압축처리하여 드럼에 담겨져 있기 때문에 일반적인 파괴분석에 의한 화학분석법으로는 작업자의 피폭, 시료의 대표성 선정 및 장시간의 화학처리 시간소요 등으로 핵종분석이 곤란하다. 따라서 본 논문은 일반적으로 감마핵종분석시 흔히 사용하고 있는 고순도게르마늄(HPGe) 검출기를 이용하여 드럼의 감마핵종농도를 분석하는 방법과 장치의 개발에 대해 언급하였으며 알파나 베타핵종과 같이 직접 분석이 곤란한 핵종들은 각 폐기물드럼내에 존재하는 Co-60이나 Cs-137과의 상관관계를 미리 예측한 척도인자 (scaling factor)를 이용하여 간접적으로 구하는 방법을 사용하고 있으나 본 논문에서는 드럼으로부터 감마핵종만을 분석하는 방법에 대해서만 언급하였다. 또한 핵종분석시스템의 최적 운전조건을 도출하기 위해 드럼회전테이블의 속도결정 및 모의드럼을 이용한 방사능측정 등을 통해 핵종 농도 분석시의 오차를 30% 이내로 유지할 수 있었다.

  • PDF

Monitoring and Control of the Air Spindle Based Microdrilling Using Spindle Speed Variations (주축속도변동을 이용한 공기회전축식 미세구멍가공의 감시제어)

  • 안중환;김화영;이응숙;오정욱
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.5
    • /
    • pp.1176-1181
    • /
    • 1995
  • Microdrilling is one of the most difficult operations because of the poor chip discharge and the weakness of tool. This study is concerned about the development of a microdrilling monitoring system that is useful for minimizing the tool breakage and enhancing the machinability in the air spindle based microdrilling. The system is composed of a drilling state detection unit and an adaptive step-feed control unit that controls the micro-stepping motor driven spindle axis. Drilling states such as overload, tood breakage are recognized by the change of the air spindle speed which is measured via the reflective photo sensor. Based on the monitoring results, the adaptive step-feed control algorithm adjusts the step increment to keep the decrease of spindle speed within a specified range. The results of evaluation tests have shown that the developed system is very effective to prevent the breakage of microdrill and improves the productivity in comparison with the conventional microdrilling.

A Study on Effect of Tool Wear Rate upon Cutting Tool Shape in a Titanium Rough Cut Machining (티타늄 황삭가공에 있어서 공구형상이 공구마모율에 미치는 영향에 관한 연구)

  • Jung, Hwa
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.10
    • /
    • pp.27-33
    • /
    • 2019
  • The aviation industry has grown beyond the simple processing and assembling of aircraft parts and now designs and exports finished aircraft. In this study, the vertical CNC milling rotational speed and feed rate were parameters to investigate the life of tools according to their shape: (flat, round, and ball end mill) in the rough cutting of titanium. These tools are widely used in aircraft manufacturing and assembly. The purpose of this study is to measure the cutting temperature generated during the cutting process and calculate the rate of tool wear. This will be accomplished by measuring the tool weight before and after cutting the specimen and to compare it with the results of previous studies. Our study showed that the maximum cutting temperature increased as cutting time, tool rotational speed, and feed rate increased. The highest cutting temperatures were recorded for the ball, round, and flat end mill, respectively. Tool wear for the ball, round, and flat end mill increased as the speed and feed rate increased. The flat end mill exhibited the highest rate of wear from a minimum of 0.62% to a maximum of 2.88%.

Characteristics of Dissimilar Materials Al alloy(A6005)-Mg alloy(AZ61) Under Friction Stir Welding for Railway Vehicle (철도차량 적용을 위한 Al alloy(A6005)-Mg alloy(AZ61) 이종소재 마찰교반용접 특성 연구)

  • Lee, Woo-Geun;Kim, Jung-Seok;Sun, Seung-Ju;Lim, Jae-Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.8
    • /
    • pp.706-713
    • /
    • 2016
  • In this study, the welding characteristics of friction stir welding were investigated in accordance with the tool plunge position and cooling to the base materials for the joining of dissimilar materials (A6005-AZ61). Other different welding conditions, such as the tool rotation speed and welding speed, were fixed to 500rpm-30mm/min, respectively, and welding was then carried out by placing the Mg alloy (AZ61) on the advancing side and Al alloy(A6005) on the retreating side. Welding was conducted under six different conditions. To investigate the welding characteristic, tensile test and microstructure observations using an optical microscope were carried out. As the tensile test result, the maximum strength appeared under the condition in which the tool is moved 1 mm to the Mg alloy direction and cooling to the base materials. Under the same welding conditions, the strength with cooling was approximately two times higher than that without cooling. The tool was located in each direction of 1.7 mm from the weld line. Therefore, in the excessive off-set of tool position, the welding integrity was in an extremely poor condition due to the lack of stirring. This study was confirmed by the A6005-AZ61 dissimilar friction stir welding the welding speed and the tool rotation speed. In addition, the temperature control and tool plunge position are important welding parameters.

Evaluation of the Shape Accuracy of Turning Operations (선삭가공에서의 형상 정밀도에 대한 평가)

  • Park, Dong-Keun;Lee, Joon-Seong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.3
    • /
    • pp.1645-1651
    • /
    • 2015
  • This paper describes the changes of shape accuracy in workpiece materials depending on the turning clearance angle. The experiments started from choosing three workpiece materials, SM45C(machine structural carbon steel), STS303(stainless steel) and SCM415 (chrome-molybdenum steel). The experiments showed specifically how features of selected materials changed when they were processed with diverse machining depths, 0.1 mm, 0.2 mm and 0.3 mm, with various negative angles, $0.0^{\circ}(-6.0^{\circ})$, $0.3^{\circ}(-6.3^{\circ})$ and $0.9^{\circ}(-6.9^{\circ})$, and called cutting edge inclination starting from a fixed rotational speed, 2,500 rpm, focusing on the feed rate, 0.07 mm/rev and 0.10 mm/rev. The results of the accuracy of processing, cylindricity, deviation from coaxiality, etc. were compared using the graph and table. The accuracy of cylindricity in the order of degree $0.0^{\circ}{\rightarrow}0.3^{\circ}{\rightarrow}0.9^{\circ}$ depending on the workpiece materials showed the best cylindricity when it was $0.9^{\circ}$. In conclusion, the accuracy improved in specific degrees irrespective of the quality of the materials when the bite negative angles increased. This means that workability improved in these experiments. In addition, the processing shape changed depending on depth of the cut and feed rate.