• Title/Summary/Keyword: 이송속도 제어

Search Result 79, Processing Time 0.029 seconds

simultaneous Control of Position and Cutting Force Based o Multi-input Multi-output Model in Ball End Milling Process (볼엔드밀 절삭공정에서 위치 및 절삭력 동시제어)

  • 이건복
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.121-126
    • /
    • 2000
  • This research proposes a new advanced control method and demonstrates its realization in part. By incorporating shape machining and cutting force control at a time, this integrated scheme makes it possible to machine a desired shape and avoid the trouble of programming feedrate and spindle speed before machining and also reduce the shape error. The main idea proposed to achieve those goals consists in giving commanded path and desired cutting force at the same time. which makes it possible for position and force controller to distribute the corresponding velocity of individual axes and main spindle by an appropriate interpolation. That indicates we can replace the built-in interpolator of commercial machine tools by the developed algorithm.

  • PDF

Afeedrate Override Control System for the Cutting Force Regulation (일정절삭력 제어를 위한 이송속도 적응제어 시스템)

  • 김창성;박영진;정성종
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.10a
    • /
    • pp.321-327
    • /
    • 1993
  • In order to maintain the cutting force at a desired level during peripheral end milling processes in spite of variation of the depth of cut and other machining conditions, a feedrate override. Apaptive Control Constraint (ACC) system are developed. Feedrate override was accomplished by a developed MMC board and PMC interface techniques. Nonlinear model of the cutting process was linearized as an adaptive model with time varying paramrters. Integral type estimators were introduced for on-line identification of cutting and control parameters in peripheral and milling processes. Zero Order Jold (ZOH) type degital control methodology which uses pole-placement concepts was applied for the ACC system. Performance of the developed ACC system was confirmed on the vertical machining center equipped with FANUC OMC for a large amount of experiment

  • PDF

A Study on Vibration & Noise Reduction of Fast Back Feeding Device for Manufacturing Process (제조공정용 Fast Back 이송장치 진동·소음 저감에 관한 연구)

  • Han, Doo-Hee;Lee, Seung-Hun;Son, Yung-Deug
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.8
    • /
    • pp.642-648
    • /
    • 2019
  • This paper presents a fast back-type transfer device for snack food processing that uses the inertia of transferred material. A conventional conveying system is a drive system that uses a belt conveyor and mechanical crank, which generate noise and vibration and cause environmental pollution. Vibration and noise are reduced in the proposed fast back feeding device by using a counterweight. The crank drive unit was replaced with a linear servomotor, and an equilibrium device was designed to balance the force due to acceleration. This makes it is possible to adjust the forward and backward speed and acceleration through PLC control. A vibration damper device offsets the vibration force of the periodic shock form. The main cause of the vibration was identified through vibration analysis, and reduction measures were established. We verified the effectiveness of the vibration by making a prototype and performing about 10 vibration tests. Because no mechanical transducer is needed, energy loss, noise, and vibration do not occur, and the operating speed is not limited.

Gain Parameter Determination for the Feeding Speed and Skew Controller of Media Transport System using Optimization Technique (최적화 기법을 적용한 매체 이송 시스템의 이송속도 및 비틀어짐 제어기의 이득값 결정)

  • Cha, Ho-Young;Bum, Sun-Ho;Kim, Min-Soo;Lee, Soon-Geul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.6
    • /
    • pp.607-613
    • /
    • 2009
  • In this paper, we made a simple paper feeding system which is one of MTS (media transport system) and controllers. The plant has a flexible paper and two driving rollers and two driven rollers. The control system has two conventional PID controllers. Skew angle and feeding speed of MTS deteriorate the quality of feeding system. In order to control a feeding speed and skew of feeding paper, we control rotational velocity of two driving rollers. Therefore, this controller has two inputs and two outputs as MIMO (multi-input and multi-output) system. The control inputs were the feeding speed and the skew displacement of the paper. The control outputs were the rotational velocity to each driving roller. To find appropriate PID gains of two controllers, we proposed an optimization technique. We assume the system variables and performance of a whole system as follows. PID gains of two controllers for skew and feeding speed are system variables. System performance is both skew and feeding speed. We simulates to making mathematical correlation using global Kriging interpolation. To find appropriate value of system variables, optimization method is simulation in sequence as following method. First, the optimization solver simulates with DOE (design of experiment) tables to find correlation equation of both system variable and performances. Then, the solver guesses the appropriate values and simulates if the system variables are appropriate or not. If the result of validation doesn't satisfy the convergence and iteration tolerance, the solver makes a new Kriging models and iterates this sequence until satisfy the tolerances.

Drum Type Auto Seeding System for Automatic Speed Control System (속도 자동 제어 기능을 구비한 드럼식 자동 파종 시스템)

  • Kim, Song-Hyun;Kim, Hyun-Soo;Oh, Chang-Jun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.10a
    • /
    • pp.512-513
    • /
    • 2017
  • In this paper, an automatic sowing system which arranges the seeds gathered using inhaling technique, on the upper part of cells in trays, is developed to improve the sowing efficiency. In the system, the seeds in inhaled into the vacuum drum, then the seeds are exhausted and arranged on the rotating tray, resulting in rapid sowing system. Also, the velocity control algorithm for the conveyor belt transporting tray is developed to compensate the velocity error generated while the belt is carrying the tray. The velocity control algorithm controls the pulses applying to the stepper motor rotating the drum.

  • PDF

Development of Semi-automatic Cabbage Piling System for Tractor Implemented Chinese Cabbage Hervester (트랙터 부착형 배추 수확기용 반자동식 배추 적재시스템 개발)

  • Song, K. S.;Choi, D. Y.;Hwang, H.
    • Journal of Biosystems Engineering
    • /
    • v.27 no.3
    • /
    • pp.211-218
    • /
    • 2002
  • 배추 생산에 있어서 수확, 운반, 적재 작업은 가장 노동이 집약적으로 요구되는 작업들이다. 최근, 여러 종류의 양배추 수화기가 일본과 유럽에서 개발되었다. 하지만 국내에서 재래되는 배추는 크기와 형태에 있어 양배추와는 달라 기 개발 기종의 도입이 어렵다. 또한 수확작업의 생력화 효과는 운반, 정선, 적재 작업과 밀접하게 연계되어 있어 출하시의 작업체계를 고려하여 수화에 따른 수집.반출 시스템을 개발하여야 한다. 수확시의 배추는 중량이 25~45 N 정도로 다 작물에 비하여 무겁고 부피가 크기 때문에 수확작업의 기계화를 위해서는 수확장치와 더불어 연속적으로 수확되는 배추를 적절하게 수집하여 적재하고 반출하는 시스템의 개발이 중요하다. 본 연구에서는 수확작업의 생력화 효과를 높이고 생력화 시스템 비용의 절감을 목적으로 작업자 1인에 의해 작업할 수 있는 반자동 형태의 트랙터 부착형 배추 수집, 적재, 반출시스템 시작기를 개발하였다. 시작기는 배추 이송장치, 적재장치, 팔렛 및 반출장치의 3개 부분과 PLC를 이용한 주 제어기로 구성하였다. 배추 수집용기로는 대략 70개의 배추를 담을 수 있는 크기가 1,050 mm$\times$1.050mm$\times$1,000mm 인 접이식 메쉬 팔렛을 사용하였으며 하단부에 롤러 안내판을 부착하여 적재한 팔렛의 배출이 용이하도록 하였다. 팔렛을 제외한 전체 시작기의 중량은 235 N 이였으며 크기는 3,940mm$\times$520mm$\times$1,630mm 이었다. 본 연구는 수확장치의 기능 및 생력화 효과를 극대화하고 배추의 손상정도를 최소화하는 시스템을 구성하고자 하였다. 이송장치는 트랙터 부착시 횡공간 점유율을 최소화하도록 하였으며 적재장치는 적재시 배추의 손상을 줄이고 배추가 놓이는 자세를 능동적으로 조절할 수 있도록 주름관을 부착하였다. 시작기의 실내시험 결과 이송장치는 0.18 m/s~0.36 m/s의 범위에서 적재장치는 0.4 m/s~2.4 m/s 범위에서 안정적으로 구동하였으며 두 장치를 동시에 구동하여 시험한 결과 이송장치는 0.26 m/s~0.36 m/s, 그리고 적재장치는 0.9 m/s~2.4 m/s 에서 적정하게 안정적으로 구동하였다. 적재장치의 성능에 있어서 1~3단 적재시에는 주름관을 이용하여 적재하고 4~5단 적재시에는 자유낙하에 의한 적재를 수행할 경우 인력에 의한 적재와 거의 동등한 적재량을 보였으며 손상정도는 거의 무시할 정도였다. 트랙터가 0.3 m/s로 주행하는 경우 노지로부터 배추를 뽑아 이송하는 뽑기벨트의 적정속도가 0.46 m/s인 점을 고려할 때 배추 이송 컨베이어는 0.34 m/s 이상의 속도를 유지할 필요가 있었으며 적재 컨베이어는 2 m/s~2.4 m/s의 속도에서 안정적으로 작동하였다. 배추의 주간 거리가 대략 30~40 cm 인 점을 감안하면 적재장치는 초당 1개의 적재성능을 보였다. 실내에서 수행한 시스템의 성능은 배추에 큰 손상없이 전반적으로 성공적으로 구동하였으나 향후 노면이 고르지 못한 포장에서의 성능 시험이 필요하다.

Application of an Adaptive Robust Controller to Cutting Force Regulation (견실한 서보적응제어기를 응용한 절삭력 추종제어)

  • 김종원
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.1
    • /
    • pp.78-89
    • /
    • 1991
  • This Paper presents an application example of the Adaptive Robust Servocontrol (ARSC) scheme, which is an explicit (or indirect) pole-assignment adaptive algorithm with the property of "robustness". The ARSC scheme is applied to an end-milling process for cutting force regulation. It is shown that the federate of an end-milling process can be maximized by the adaptive regulation of the peak cutting force through the ARSC scheme. The results of simulation study and real cutting experiment are presented. It has been verified that asymptotic regulation can be achieved with robustness against the slowly time-varying perturbations to the process model parameters, which are caused by nonlinear cutting dynamics. dynamics.

Cutting Power Based Feedrate Optimization for High-Efficient Machining (고능률 가공을 위한 절삭 동력 기반의 이송 속도 최적화)

  • Cho Jaewan;Kim Seokil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.2 s.233
    • /
    • pp.333-340
    • /
    • 2005
  • Feedrate is one of the factors that have the significant effects on the productivity, qualify and tool life in the cutting mechanism as well as cutting velocity, depth of cut and width of cut. In this study, in order to realize the high-efficient machining, a new feedrate optimization method is proposed based on the concept that the optimum feedrate can be derived from the allowable cutting power since the cutting power can be predicted from the cutting parameters as feedrate, depth of cut, width of cut, chip thickness, engagement angle, rake angle, specific cutting force and so on. Tool paths are extracted from the original NC program via the reverse post-processing process and converted into the infinitesimal tool paths via the interpolation process. And the novel NC program is reconstructed by optimizing the feedrate of infinitesimal tool paths. Especially, the fast feedrate optimization is realized by using the Boolean operation based on the Goldfeather CSG rendering algorithm, and the simulation results reveal the availability of the proposed optimization method dramatically reducing the cutting time and/or the optimization time. As a result, the proposed optimization method will go far toward improving the productivity and qualify.

Modal Analysis and Velocity Control of Bowl Parts Feeder Activated by Piezoactuators (압전작동기로 구동 되는 보울 파트 피더의 모드 해석과 이송 속도 제어)

  • Lee, Dong-Ho;Choe, Seung-Bok;Kim, Jae-Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.4 s.175
    • /
    • pp.839-847
    • /
    • 2000
  • This paper presents modal analysis and mean conveying velocity (M.C.V.) control of bowl parts feeder activated by piezoactuators. Bowl parts feeders are being widely used in many industry fields for automatic assembly line. In general, the electromagnet has been and being used as exciting actuator of these vibratory bowl feeders. However, because of complexity of its mechanism and limited capability of the electromagnet actuator, there exist various impending problems such as severe noise, nonlinear motion of parts, passive characteristics and so forth. As one of solutions for these problems, piezoelectric actuators as new actuating technology have been proposed recently to excite the bowl parts feeder. In this paper, modal analysis of the proposed model has been performed to examine the modal characteristics of the model by using commercial FEM software and modeling with respects to MCV is constructed. Finally, MCV of the parts is to be controlled to track the desired one with PID controller.

Numerical Study on Effects of Velocity Profile of Liquid Container on Sloshing (액체 용기의 속도 프로파일이 슬로싱에 미치는 영향 해석)

  • Kim, Dongjoo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.5
    • /
    • pp.313-319
    • /
    • 2016
  • It is very important to understand and control the sloshing in a liquid container that is partially filled with liquid. Previous studies focused primarily on the sloshing and resonance caused by sinusoidal excitations, while the present study focuses on understanding and suppressing sloshing in a container that moves rapidly from a given point to another in industrial applications. To achieve this, we first numerically predict the two-phase flow induced by the horizontal movement of a rectangular container. Then we analyze the effects of container-velocity profile (in particular acceleration/deceleration duration) on sloshing. Results show that sloshing is significantly suppressed when the acceleration/deceleration duration is a multiple of the 1st-mode natural period of sloshing.