• Title/Summary/Keyword: 이소시안산

Search Result 5, Processing Time 0.02 seconds

Determination of Reactivity by MO Theory (XXI). MO Theoretical Studies on Urethane Formation (分子軌道論에 의한 反應性의 決定 (제21보). 우레탄 形成에 관한 MO 論的 硏究)

  • Ikchoon Lee;Nag Young Jung;Shi Choon Kim
    • Journal of the Korean Chemical Society
    • /
    • v.25 no.6
    • /
    • pp.361-366
    • /
    • 1981
  • For the urethane formation reaction of isocyanate with alcohol, orientation of approach of alcohol toward isocyanate was investigated theoretically by means of MO method. As a result of EHT and CNDO/2 calculations, it was found that the reaction proceeding via 4-centered mechanism, in which ROH is coplanar with isocyanate plane was energetically favored. It was also shown that the oxygen of ROH attacks the isocyanate carbon prior to the formation of 4-center complex. The reaction was found to be a charge controlled one.

  • PDF

Experimental Study on Characteristics of Ammonia Conversion Rate of Urea Aqueous Solution in 250℃ Exhaust Pipe (250℃ 이하 배기관에서 우레아 수용액의 암모니아 전환율 특성에 관한 실험적 연구)

  • Ku, Kun Woo;Park, Hong Min;Hong, Jung Goo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.2
    • /
    • pp.177-182
    • /
    • 2015
  • The NOx emissions from diesel engines and industrial boilers are a major cause of environmental pollution. The selective catalytic reduction of urea is an aftertreatment technology that is widely used for the reduction of NOx emissions. The objective of this study was to investigate the characteristics of the thermal decomposition of a urea aqueous solution using laboratory-scale experimental equipment under conditions similar to those of marine diesel engines. A 40 wt. urea aqueous solution was used in this study. It was found that the total conversion rate varied with the inflow gas conditions and flow rates of the urea aqueous solution. In addition, there were conversion rate differences between NH3 and HNCO. At inflow gas temperature conditions of $210^{\circ}C$ and $250^{\circ}C$, the $NH_3$ conversion rate was found to be higher than that of the HNCO, depending on the residence time.

An Experimental Study on Conversion of Reducing Agent from Aqueous Urea Solutions under Low Reaction Temperature (저온 반응장에서 요소 수용액의 환원제 전환에 관한 실험적 연구)

  • Ku, Kun Woo;Hong, Jung Goo
    • Journal of ILASS-Korea
    • /
    • v.20 no.1
    • /
    • pp.20-27
    • /
    • 2015
  • Urea-SCR which is one of the aftertreatment technologies for reducing the NOx emission is widely used. An experimental study was performed to investigate urea decomposition under various thermo-fluid conditions, with different temperatures and velocities of inflow gas, and urea solution quantities. 40 wt. % aqueous urea solutions were used in this study. The inflow gas conditions were similar to the exhaust conditions of a large marine engine. The spray performance of urea solution injector was identical under all experimental conditions. The conversion efficiency of $NH_3$ was larger than that of HNCO under all experimental conditions, unlike for the theoretical thermolysis reaction.

Study on Enhancement of Ammonia Generation for Effective Collision Frequency (유효충돌빈도를 고려한 암모니아 생성 증대기법 연구)

  • Sejin Kim;Yongseok CHoi;Hyunchul Park
    • Journal of Aerospace System Engineering
    • /
    • v.17 no.6
    • /
    • pp.1-8
    • /
    • 2023
  • Research, such as developing alternative energy in the transportation field, including aviation, is being actively conducted to solve the issue of current climate change. Interest in ammonia fuel as a carbon free energy (CFE) source is increasing due to the ease of liquefaction and transportation and similarity in energy density to that of methanol. However, explosiveness and toxicity of ammonia make it difficult to handle. Therefore, in this study, stable ammonia production was attempted using relatively easy-to-handle urea water solution (UWS). High temperature steam was used to promote the hydrolysis of ammonia. In order to determine the causes for ammonia production below the theoretical equivalent ratio, it was suggested that there were not enough collisions to promote the hydrolysis based on the kinetic theory of gases. The hydrolysis of unreacted isocyanic acid (HNCO) was tested according to the change in water supply. As a result, an increased amount of ammonia produced was confirmed. The increased amount of ammonia produced in a certain section was dependent on the steam temperature and the flow rate of water supplied.

Experimental Study on Spray Characteristics of Twin Fluid Nozzle in Urea-SCR (Urea-SCR에 적용되는 이유체 노즐의 분무특성에 관한 실험적 연구)

  • Park, Hyung Sun;Hong, Jung Goo
    • Journal of ILASS-Korea
    • /
    • v.22 no.2
    • /
    • pp.96-102
    • /
    • 2017
  • In order to reduce the NOx, SCR technology is most suitable. In this study, we focused on studying the injector part of urea-SCR system. When stoichiometric 1 mole of urea is injected, 2 moles of $NH_3$ are created. $NH_3$ causes a SCR reaction by reacting with NOx. However, urea is decomposed by the side reaction of coming out HNCO, deposit formation is formed. In this study, it was to design a nozzle that can spray the optimal spray flow rate. Test nozzle used in this experiment is efferverscent type. The result of the experiment, liquid flow rate was confirmed to be that they are dominated by the exit orifice diameter. The area ratio is defined by ratio of the area of exit orifice hole and that of aerorator. The droplet size was measured by varying the area ratios. In addition, it was also confirmed that there is no change of the liquid flow rate and air flow rate to change the aerorator at the same exit orifice. Further, It was confirmed that the droplet size was relatively uniform even though the area ratio was different. Finally, there is little change in the SMD that air flow rate increases in 0.3 or more ALR.