• Title/Summary/Keyword: 이선형 힌지

Search Result 65, Processing Time 0.029 seconds

Nonlinear Theory for Laboratory Wave Generation (비선형(非線形) 조파이론(造波理論))

  • Kim, Tae In
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.12 no.4_1
    • /
    • pp.137-150
    • /
    • 1992
  • A complete solution, exact to second-order, for wave motion forced by a hinged-wavemaker of variable-draft is presented. A solution for a piston type wavemaker is also obtained as a special case of a hinged-wavemaker. The laboratory waves generated by a plane wave board are shown to be composed of two components; viz., a Stokes second-order wave and a second-harnomic free wave which travels at a different speed. The amplitude of the second-harmonic free wave is relatively large in shallow water and decreases to less than 10% of the amplitude of the primary wave in deep water. Wavemakers with relatively deeper draft (i.e., hinged near the bottom) generate the free waves of smaller amplitude in shallow and intermediate water depths than the wavemakers with shallow draft. However, the opposite is predicted by theory in deep water.

  • PDF

Analysis of Plastic Hinge on Pile-Bent Structure with Varying Diameters (변단면 단일 현장타설말뚝의 소성힌지 영향분석)

  • Ahn, Sangyong;Jeong, Sangseom;Kim, Jaeyoung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.3C
    • /
    • pp.149-158
    • /
    • 2010
  • In this study, the behavior of Pile-Bent structure with varying diameters subjected to lateral loads were evaluated by a load transfer approach. An analytical method based on the beam-column model and nonlinear load transfer curve method was proposed to consider material non-linearity (elastic, yielding) and P-${\Delta}$ effect. For an effective analysis of behavior Pile-Bent structure, the bending moment and fracture lateral load of material were evaluated. And special attention was given to lateral behavior of Pile-Bent structures depending on reinforcing effect of materials and ground conditions. Based on the parametric study, it is shown that the maximum bending moment is located within a depth (plastic hinge) approximately 1~3D (D: pile diameter) below ground surface when material non-linearity and P-${\Delta}$ effect are considered. And distribution of the lateral deflections and bending moments on a pile are highly influenced by the effect of yielding. It is also found that this method considering material yielding behavior and P-${\Delta}$ effect can be effectively used to perform the preliminary design of Pile-bent structures.

Seismic Fragility Analysis by Boundary Conditions of a Two-pylon Concrete Cable-stayed Bridge (2주탑 콘크리트 사장교의 경계조건별 지진 취약도 분석)

  • Shin, Yeon-Woo;Hong, Ki-Nam;Yeon, Yeong-Mo;Ji, Sang-Won
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.5
    • /
    • pp.77-85
    • /
    • 2020
  • In this study, the seismic fragility curve according to the boundary conditions is created for a two-pylon concrete cable-stayed bridge, and the effect of the boundary conditions on the seismic fragility of the target bridge is evaluated. An analysis model for the target bridge is constructed using Midas Civil, and a nonlinear time history analysis is performed by applying the fiber element, concrete and rebar material models. The boundary conditions between the pylon and the stiffened girder are classified into four types: rigid, unconstrained, pot bearing, and seismic isolation bearing, and the seismic fragility curves are created for each boundary condition. The plastic hinge section of the pylon, the connection part, and the cable are selected as weak members, and the earthquake vulnerability curve is created for them. As a result of the analysis, it is found that the seismic isolation bearing model shows the lowest damage probability in the pylon and the connection part, and the seismic fragility of the cable is less affected by the boundary conditions than other members.

Influence of Column Base Rigidity on Behavior of Steel Buildings (강구조물 지지부의 강성도가 구조물 거동에 미치는 영향)

  • 권민호;박문호;장준호;박순응
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.1
    • /
    • pp.165-172
    • /
    • 2002
  • Generally, the steel rigid frame has been analyzed using finite element analysis tools. While many efforts have been poured into the understanding and accurate prediction for the nonlinear behavior of the columns and beam-columns connections, the base of the columns are modeled as simply hinged or fixed. However, the base of the steel columns practically is neither fixed not hinged. It behaves as semi-rigid. In this paper, the supports of the columns we modeled as semi-rigid and the importance of such approach in moment-resisting columns is evaluated. Two typical buildings designed by the US specification are modeled and analyzed by the finite element based on stiffness method and flexibility method. The column bases of three-story buildings are modeled as rotational springs with a varying degree of stiffness and strength that simulates the semi-rigidity of the base. Depending on the degree of stiffness and strength, the semi-rigidity varies from the hinged to the fixed. Buildings with semi-rigid column bases behaves similarly to the building with fixed bases. It has been numerically observed through the pushover and nonlinear time history analyses that the decrease of the stiffness of the column base induces the rotational demand on the int air beams. an increase of rotation demands on the first store connections and lead to a soft-story mechanists Due often to the construction and environmental effects, undesired reduction of column base stiffness may cause an increase of rotation demands on the first store connections and lead to a soft-story mechanism.

Proposal of a New Design Method of the Pile-Bent Structure Considering Plastic Hinge (단일 현장타설말뚝의 소성힌지를 고려한 최적설계법 제안)

  • Ahn, Sang-Yong;Jeong, Sang-Seom;Kim, Jae-Young
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.2
    • /
    • pp.91-101
    • /
    • 2011
  • In this study, a new design method of Pile-Bent structure considering plastic hinge was proposed on the basis of the beam-column model. To obtain the detailed informations, the optimized cross-section ratio between column and pile was analyzed to induce the plastic hinge at the joint section between the pile and column. Base on this study, the optimized diameter ratio of pile and column can be obtained below the inflection point of the bi-linear curve depending on the relations between column-pile diameter ratio ($D_c/D_p$) and normalized lateral cracking load ratio ($F/F_{Dc=Dp}$). Moreover, through comparisons with field cases to find out in-depth limit in which minimum concrete-steel ratio could be applied, in-depth limits ($L_{As=0.4%}$) normalized by the pile length ($L_p$) proportionally decrease as the pile length ($L_p/D_p$)increases up to $L_p/D_p=17.5$, and beyond that in-depth limit converges to a constant value (${\simeq}0.3$).

Development of Multi-Purpose Satellite II with Deployable Solar Arrays: Part 2. Ground Deployment Experiments (다목적2호기 태양전지판의 전개시스템 개발: PART 2. 지상전개실험)

  • Heo,Seok;Gwak,Mun-Gyu;Kim,Yeong-Gi;Kim,Hong-Bae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.9
    • /
    • pp.82-87
    • /
    • 2003
  • This research is concerned with ground experiments for satellite solar array deployment as well as the validation of theoretical modeling technique presented in the previous paper. We carried out the experiments on the strain energy hinge with stopper to investigate he buckling characteristics of the SEH, which affects the shape and the speed of the solar array deployment. The moment-angle diagram obtained from the experiments was later combined with the theoretical deployment model. This paper also presents the details of the ground experiments performed at the Korea Aerospace Research Institute(KARI) . It was found that the ground experimental results were in good agreement with the theoretical predictions thus validating the dynamic modeling technique.

Assessment of Fragility Curve for Earthquake in Railway Bridge (기존 철도교량의 지진에 대한 취약도 곡선 산정)

  • Kim, Dae-Ho;Sun, Chang-Ho;Kim, Ick-Hyun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.101-104
    • /
    • 2008
  • Recently, the serious damage by earthquakes is increased around the world. SOC fo city is established to minimize the loss of lives and assets by earthquakes, which an objective standard is required. Generally, bridges damage by earthquakes occurred the inelastic hinge under the column. Nonlinear element model of inelastic hinge have been used to Bilinear model, but Takeda model for material characterization of concrete is a little. In this study, railway bridge was performed seismic fragility analysis for Takeda model and Bilinear model comparatively. This analysis shows that damage probability of Takeda model is larger than Bilinear model. And analysis of Takeda model in longitudinal direction and transverse direction are different. Therefore developed analysis for concrete column of bridge is expected to apply to material characterization.

  • PDF

Application and Verification of Coupled Analysis of Piled Piers (교량 말뚝기초 해석기법의 적용성 분석)

  • Won Jin-Oh;Jeong Sang-Seom
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.4
    • /
    • pp.123-134
    • /
    • 2005
  • A coupled three-dimensional pile group analysis method (YSGroup) was developed considering nonlinear pile head stiffness matrices and compared with other analytical methods (elastic displacement method, Group 6.0 and FBPier 3.0). In this method, a pile cap was modelled by four-node flat shell element, a pier was modelled using 3 dimensional beam element, and individual piles were modelled as beam-column elements. Through the comparative studies on a piled pie. subjected to lateral loads in linear soil, it was found that present method (YSGroup), elastic displacement method and Group 6.0 gave similar results of lateral pile head displacement, but FBPier 3.0 was estimated to show somewhat larger displacements than those from the three methods. Displacements of superstructure (pier), including nonlinear soil behavior, could be estimated by present method (YSGroup) and FBPier 3.0 because these two methods modelled the superstructure directly by finite element techniques. It was found that pile groups in pinned pile head condition had a tendency to cause excessive rotation of the pile cap.

A Study on the Failure Mode of FRP Bridge Deck in It's Weak Axis (FRP 바닥판의 약축방향 파괴모드에 관한 연구)

  • Kim Byeong-Min;Hwang Yoon-Koog;Lee Young-Ho;Kang Young-Jong;Zi Goang-Seup
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.19 no.1 s.71
    • /
    • pp.73-83
    • /
    • 2006
  • The failure mechanism of a hollow bridge deck which is made of fiber reinforced polymer (FRP) to improve its durability and life time significantly is investigated using both experiments and analyses. While the Load-displacement behavior of the deck in the longitudinal direction is almost linear just before the failure, the behavior in the transverse direction shows a strong nonlinearity even in its initial response with relatively small magnitude of loads. We found that the nonlinearity is due to the imperfection of the connection between the flange and the web; a plastic deformation can t라e place in the connection. The argument is demonstrated using a simple structural model in which a rigid plastic hinge is introduced to the connection. We also checked the contribution of the delamination mechanism to the failure. But the delamination is not the main mechanism which initiates and causes the failure of the bridge deck. In order to improved the structural behavior of the deck in the transverse direction, we suggested that the empty space of the bridge deck is filled with a foam and confirmed the improved behavior by a numerical analysis.

Nonlinear Hinge Dynamics Estimation of Deployable Missile Control Fin (접는 미사일 조종날개의 비선형 힌지 동특성 파악)

  • Kim, Dae-Kwan;Bae, Jae-Sung;Lee, In;Woo, Sung-Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.848-854
    • /
    • 2002
  • The nonlinear characteristics for the hinge of a deployable missile control fin are investigated experimentally. The nonlinearity is caused by a worn or loose hinge and manufacturing tolerance and cannot be eliminated completely. The structural nonlinearity has an effect on the static and dynamic characteristics of the control fin. Therefore, it is necessary to establish the accurate nonlinear model for the hinge of the control fin. In the present study the existence of nonlinearities in the hinge is confirmed from the frequency response experiments such as tip random excitation and base sine sweep. Using the system identification method, especially, “Force-State Mapping Technique”, the types of nonlinearities are identified and the nonlinear hinge model of the control fin is established.

  • PDF