• 제목/요약/키워드: 이상탐지 알고리즘

검색결과 288건 처리시간 0.024초

의미적 유사성의 효과적 탐지를 위한 데이터 전처리 연구 (A Study on Preprocessing Method for Effective Semantic-based Similarity Measures using Approximate Matching Algorithm)

  • 강하리;정두원;이상진
    • 정보보호학회논문지
    • /
    • 제25권3호
    • /
    • pp.595-602
    • /
    • 2015
  • 디지털 포렌식 분야가 직면한 과제 중 하나는 대량의 데이터를 어떻게 효율적으로 처리할 것인가이다. 디지털 객체 간의 유사성을 빠르게 식별하기 위해 신뢰성 있는 다양한 근사 매칭 알고리즘이 계속하여 제시되어왔다. 하지만 알고리즘만으로 문자열의 의미적 유사성을 식별하면 많은 오탐을 보여 오히려 그 실효성을 끌어내리고 있다. 이와 같은 문제점을 해결하고자 근사 매칭 대상의 전처리 과정을 추가하여, 알고리즘 자체의 신뢰성은 유지하면서 유사도 탐지 정확성을 더 높일 수 있는 방법을 제시한다. 본 논문에서는 의미적 유사성을 식별하고자 eml과 hwp 세트를 가지고 sdhash로 실험하였으며, 실험 결과를 이용하여 그 효과성을 검증한다.

실시간 탐지를 위한 인공신경망 기반의 네트워크 침입탐지 시스템 (An Intrusion Detection System based on the Artificial Neural Network for Real Time Detection)

  • 김태희;강승호
    • 융합보안논문지
    • /
    • 제17권1호
    • /
    • pp.31-38
    • /
    • 2017
  • 네트워크를 통한 사이버 공격 기법들이 다양화, 고급화 되면서 간단한 규칙 기반의 침입 탐지/방지 시스템으로는 지능형 지속 위협(Advanced Persistent Threat: APT) 공격과 같은 새로운 형태의 공격을 찾아내기가 어렵다. 기존에 알려지지 않은 형태의 공격 방식을 탐지하는 이상행위 탐지(anomaly detection)를 위한 해결책으로 최근 기계학습 기법을 침입탐지 시스템에 도입한 연구들이 많다. 기계학습을 이용하는 경우, 사용하는 특징 집합에 침입탐지 시스템의 효율성과 성능이 크게 좌우된다. 일반적으로, 사용하는 특징이 많을수록 침입탐지 시스템의 정확성은 높아지는 반면 탐지를 위해 소요되는 시간이 많아져 긴급성을 요하는 경우 문제가 된다. 논문은 이러한 두 가지 조건을 동시에 충족하는 특징 집합을 찾고자 다목적 유전자 알고리즘을 제안하고 인공신경망에 기반한 네트워크 침입탐지 시스템을 설계한다. 제안한 방법의 성능 평가를 위해 NSL_KDD 데이터를 대상으로 이전에 제안된 방법들과 비교한다.

AI Fire Detection & Notification System

  • Na, You-min;Hyun, Dong-hwan;Park, Do-hyun;Hwang, Se-hyun;Lee, Soo-hong
    • 한국컴퓨터정보학회논문지
    • /
    • 제25권12호
    • /
    • pp.63-71
    • /
    • 2020
  • 본 논문에서는 최근 가장 신뢰도 높은 인공지능 탐지 알고리즘인 YOLOv3와 EfficientDet을 이용한 화재 탐지 기술과 문자, 웹, 앱, 이메일 등 4종류의 알림을 동시에 전송하는 알림서비스 그리고 화재 탐지와 알림서비스를 연동하는 AWS 시스템을 제안한다. 우리의 정확도 높은 화재 탐지 알고리즘은 두 종류인데, 로컬에서 작동하는 YOLOv3 기반의 화재탐지 모델은 2000개 이상의 화재 데이터를 이용해 데이터 증강을 통해 학습하였고, 클라우드에서 작동하는 EfficientDet은 사전학습모델(Pretrained Model)에서 추가로 학습(Transfer Learning)을 진행하였다. 4종류의 알림서비스는 AWS 서비스와 FCM 서비스를 이용해 구축하였는데, 웹, 앱, 메일의 경우 알림 전송 직후 알림이 수신되며, 기지국을 거치는 문자시스템의 경우 지연시간이 1초 이내로 충분히 빨랐다. 화재 영상의 화재 탐지 실험을 통해 우리의 화재 탐지 기술의 정확성을 입증하였으며, 화재 탐지 시간과 알림서비스 시간을 측정해 화재 발생 후 알림 전송까지의 시간도 확인해보았다. 본 논문의 AI 화재 탐지 및 알림서비스 시스템은 과거의 화재탐지 시스템들보다 더 정확하고 빨라서 화재사고 시 골든타임 확보에 큰 도움을 줄 것이라고 기대된다.

그래프 데이터베이스 환경에서 이상징후 탐지를 위한 연관 관계 분석 기법 (Association Analysis for Detecting Abnormal in Graph Database Environment)

  • 정우철;전문석;최도현
    • 융합정보논문지
    • /
    • 제10권8호
    • /
    • pp.15-22
    • /
    • 2020
  • 4차 산업 혁명과 데이터 환경의 급격한 변화는 기존 관계형 데이터베이스(RDB)는 기술적 한계를 드러내고 있다. IDC/금융/보험 등 전 분야에서 비정형 데이터에 대한 새로운 분석방안으로 그래프 데이터베이스(GDB) 기술에 관심이 높아지고 있다. 그래프 데이터베이스는 상호 연동된 데이터를 표현하고 광범위한 네트워크에서 연관 관계 분석에 효율적인 기술이다. 본 연구는 기존 RDB를 GDB 모델로 확장하고, 새로운 이상징후 탐지를 위해 기계학습 알고리즘(패턴인식, 클러스터링, 경로거리, 핵심추출)을 적용하였다. 성능분석 결과 이상 행위 성능(약 180배 이상)이 크게 향상되었고, RDB로 분석 불가능한 5단계 이후 이상징후 패턴을 추출할 수 있음을 확인하였다.

지상용 전자전장비의 방향 탐지 프로세스 개선을 통한 정확도 향상에 관한 연구 (A Study on the Accuracy Enhancement Using the Direction Finding Process Improvement of Ground-Based Electronic Warfare System)

  • 진희철;김승우;최재인;이재민
    • 한국산학기술학회논문지
    • /
    • 제18권6호
    • /
    • pp.627-635
    • /
    • 2017
  • 현대전은 점차 네트워크 중심전으로 변하고 있으며, 이의 중심인 정보 전자전 역시 지속적으로 발전하고 있다. 현대전에서 전자전은 전자파 사용과 관련된 군사 활동을 총망라하는 것으로 적의 전파 수집, 감청, 정보 분석 및 전파를 이용한 대응공격으로 대변된다. 그중 적에 대한 정보를 획득하기 위한 전파 수집 기능 중 방향 탐지 기능은 적의 방향으로부터 방사되는 신호를 수집하여 적의 방향을 계산하는 것으로 전자전 장비의 핵심 기능 중 하나이다. 본 논문은 방향 탐지 장치에 적용되는 Watson-Watt 알고리즘 및 CVDF 알고리즘에 대해 고찰한 후, 해당 알고리즘이 적용된 장치에 대해 전자파 환경이 양호한 지역에서의 방향 탐지 정확도와 실 운용 환경에서의 방향 탐지 정확도의 차이를 분석 하였다. 실 환경에서는 주변 지형지물에 의한 반사파가 방향 탐지 정확도 감소에 영향을 끼침을 확인하여 이를 개선하기 위한 개선된 프로세스를 제안하였으며, 개선된 프로세스를 통해 방향 탐지 정확도가 기존 운용 장비에 적용된 프로세스 대비 최소 $1.24^{\circ}$ 이상 개선됨을 확인하였다.

공공기관 실제 사례로 보는 랜섬웨어 탐지 방안에 대한 연구 (A Study on Ransomware Detection Methods in Actual Cases of Public Institutions)

  • 박용주;김휘강
    • 정보보호학회논문지
    • /
    • 제33권3호
    • /
    • pp.499-510
    • /
    • 2023
  • 최근 지능적이고 고도화된 사이버 공격은 악성코드가 포함된 파일을 이용하여 공공기관의 전산망을 공격하거나 정보를 유출하는 공격으로 그 피해가 커지고 있다. 다양한 정보 보호시스템이 구축된 공공기관에서도 기존의 시그니처 기반이나 정적 분석을 기반으로 하는 악성코드 및 랜섬웨어 파일 탐지하는 방식을 사용하는 경우는 알려진 공격은 탐지가 가능하나 알려지지 않은 동적 및 암호화 공격에 대해서는 취약하다. 본 연구에서 제안하는 탐지 방안은 공공기관에서 실제로 사용하는 정보보호시스템 중 악성코드 및 랜섬웨어를 탐지할 수 있는 시스템의 탐지 결과 데이터를 추출한 후 결합하여 여러 가지 속성을 도출해 내고, 머신러닝 분류 알고리즘을 통해 도출한 속성들이 어떻게 분류되고 어떤 속성이 분류 결과와 정확도 향상에 중대한 영향을 미치는지 실험을 통해 결과를 도출한다. 본 논문의 실험 결과에서는 특정 속성이 포함된 경우와 포함되지 않은 경우 알고리즘마다 상이하지만, 특정 속성이 포함된 학습에서는 정확도가 높아지는 결과를 보였으며 추후 정보보호시스템의 랜섬웨어 파일 및 이상행위 탐지 알고리즘 제작 시 속성 선택에 활용할 수 있을 것으로 기대한다.

해양 이상 자료 탐지를 위한 오토인코더 활용 기법 최적화 연구 (An Outlier Detection Using Autoencoder for Ocean Observation Data)

  • 김현재;김동훈;임채욱;신용탁;이상철;최영진;우승범
    • 한국해안·해양공학회논문집
    • /
    • 제33권6호
    • /
    • pp.265-274
    • /
    • 2021
  • 해양 이상 자료 탐지의 연구는 이전부터 활발하게 이루어지고 있으며, 통계 및 거리 기반의 기계 학습 알고리즘을 활용하는 기법들이 개발되었다. 최근에는 AI 기반의 해양 자료 이상 탐지 기법이 많은 관심을 받고 있으며, AI를 활용한 해양 이상 자료 탐지 기법은 정답이 주어지는 지도학습 기법이 주를 이루고 있다. 이러한 방법은 학습에 필요한 모든 자료에 수작업으로 분류 정보(라벨)를 지정해야 한다는 점에서 많은 시간과 비용이 요구된다. 본 연구에서는 이러한 문제를 극복하기 위해 비지도학습 기반의 오토인코더를 이상 자료 탐지 기법에 사용하였다. 실험으로는 오토인코더의 평가를 위해 단변수·다변수학습 두가지 실험을 구성하였고, 단변수 학습은 기상청에서 제공하는 덕적도 부이 정점 관측 자료 중 수온만 사용하였으며, 다변수 학습은 수온과 기온, 풍향, 풍속, 기압, 습도 등을 사용하였다. 사용기간은 1996~2020년의 25년간이며 학습 자료에 해양-기상 자료의 특성을 고려한 전처리 기법을 적용하였다. 학습된 다변수와 단변수 오토인코더를 활용하여 실제 표층 수온에 대한 이상 탐지를 시도하였다. 모델성능 비교를 위해 오차를 삽입한 합성 자료에 다변수와 단변수 오토인코더를 포함한 여러 이상 탐지 기법을 적용하여 정량적으로 평가하였으며, 다변수/단변수의 정확도가 각각 약 96%/91%로써 다변수 오토인코더가 더 나은 이상자료 탐지 성능을 보였다. 오토인코더를 이용한 비지도학습 기반 이상 탐지 기법은 주관적 판단에 의한 오류와 자료 라벨링에 필요한 시간과 비용을 줄일 수 있다는 점에서 다양하게 활용될 것으로 판단된다.

최소거리탐지 알고리즘(MDSA)을 이용한 ML 탐지 MIMO 시스템 연구 (Low Complexity MIMO System Using Minimum Distance Searching Algorithm (MDSA) with Linear Receiver)

  • 권오주
    • 한국통신학회논문지
    • /
    • 제32권4C호
    • /
    • pp.462-467
    • /
    • 2007
  • 본 논문은 공간다중화 MIMO 시스템인 ML 수신기법의 연산량을 감소시키는 최소거리탐지 알고리즘 (MDSA: Minimum Distance Searching Algorithm)을 제안한다. 선형수신기의 출력값을 기준비트로 설정하여 탐색공간을 줄이고 기준비트와 수신심벌과의 최소거리를 이용하여 최종송신심벌로의 최적경로를 구함으로써 ML의 연산량을 효율적으로 감소시킨다. 제안한 기법의 연산 반복수는 송신안테나 4개, 성상차수 16일 때, ML 방식에 비해 0.21%로 감소되었다. 성능분석 시뮬레이션 결과는 16QAM에서 송신 안테나 2개, 수신안테나 3개 이상일 때 MDS 는 ML과 성능이 거의 동일하였고, QPSK에서 송신 안테나 4개, 수신안테나 6개 이상일 때 MDS의 성능은 ML에 비해 약간 열화됨을 확인 할 수 있었다.

WDM 망에서 인공면역체계 기반의 네트워크 공격 탐지 제어 모델 및 대응 기법 설계 (Design of Network Attack Detection and Response Scheme based on Artificial Immune System in WDM Networks)

  • 유경민;양원혁;김영천
    • 한국통신학회논문지
    • /
    • 제35권4B호
    • /
    • pp.566-575
    • /
    • 2010
  • 동적인 네트워크 공격에 대응하기 위하여 인공 신경망, 유전 알고리즘, 면역 알고리즘과 같은 지능적 기술들이 공격 탐지에 적용되어 왔으며 최근에는 인공 면역 체계를 이용한 공격 탐지가 활발히 연구되고 있다. 기존의 인공면역체계 기반의 공격 탐지 기법들은 주로 자기 세포 집합과 비교를 통하여 항원을 인지하고 제거하는 부정 선택 원리만을 이용하였다. 그러나 실제 네트워크에서는 정상 상태와 비정상 상태가 거의 유사한 상태를 보이는 경우가 발생하므로 오탐지가 빈번히 발생하는 문제점이 있다. 이러한 문제점을 해결하기 위하여 본 논문에서는 새로운 인공면역체계 기반의 공격 탐지 및 대응 기법을 제안하고 그 성능을 평가한다. 제안하는 기법에서는 인간면역 체계에서 발생하는 수지상 세포와 T 세포의 면역 상호 작용을 적용하여 버퍼 점유율 변화를 이용한 검출기 집합을 발생시키고 공격 탐지 모듈과 대응 모듈을 다음과 같이 설계하였다. 첫째, self/non-self 구별을 위한 부정 선택 원리를 이용하여 검출기 집합을 발생시킨다. 둘째, 공격 탐지 모듈에서는 발생된 검출기 집합을 이용하여 네트워크 이상 상태를 탐지하고 경고 신호를 발생시킨다. 이때 오탐지를 줄이기 위하여 위험이론을 적용하며 위험도를 추측하기 위해 퍼지 이론을 이용한다. 마지막으로 공격 대응 모듈에서는 역추적된 공격 노드에 제어 신호를 전송 하여 공격 트래픽을 제한하도록 한다.

심층신경망 모델을 이용한 대기오염망 자료확정 알고리즘 연구 (A Study on the Air Pollution Monitoring Network Algorithm Using Deep Learning)

  • 이선우;양호준;이문형;최정무;윤세환;권장우;박지훈;정동희;신혜정
    • 융합정보논문지
    • /
    • 제11권11호
    • /
    • pp.57-65
    • /
    • 2021
  • 본 논문은 딥 러닝(Deep Learning)을 이용하여 대기오염측정망 데이터 중 특정 증상이 나타나는 이상 데이터를 탐지하는 방법을 제시한다. 기존 방법들은 일반적으로 시계열 데이터 내에서 기존과는 다른 특이한 패턴이 나타나는 데이터를 탐지하여 이상치로 분류하며, 이는 특정 증상만을 탐지하기에는 적합하지 않다. 본 논문에서는 주로 이미지의 전경 분리(Sementic Segmentation)에 사용되는 DeepLab V3+ 모델의 2차원 합성곱 신경망 구조를 1차원 구조로 변형하여 이미지 대신 여러 센서의 시계열 측정값을 입력받고 특정 증상이 나타나는 데이터를 탐지하도록 하는 방법을 제시한다. 또한, 데이터에 '조각별 집계 근사법(Piecewise Aggregate Approximation)'을 적용하여 잡음이 많은 대기오염측정망 데이터의 복잡도를 줄임으로써 성능을 높인다. 실험 결과를 통해 준수한 성능으로 이상치 탐지를 수행할 수 있음을 확인할 수 있다.