• 제목/요약/키워드: 이상징후

검색결과 406건 처리시간 0.034초

은닉마코프모델을 이용한 이상징후 탐지 기법 (An Anomaly Detection based on Probabilistic Behavior of Hidden Markov Models)

  • 이은영;한찬규;최형기
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2008년도 춘계학술발표대회
    • /
    • pp.1139-1142
    • /
    • 2008
  • 인터넷의 이용이 증가함에 따라 네트워크를 통한 다양한 공격 역시 증가 추세에 있다. 따라서 네트워크 이상징후를 사전에 탐지하고 상황에 따라 유연하게 대처할 수 있도록 하기 위한 연구가 절실하다. 본 연구는 은닉마코프모델을 이용해 트래픽에서 이상징후를 탐지하는 기법을 제안한다. 제안하는 기법은 시계열 예측 기법을 이용해 트래픽에서 징후를 추출한다. 징후추출 과정의 결과를 은닉마코프모델을 활용한 징후판단과정을 통해 네트워크 이상징후인지를 판단하고 결정한다. 일련의 과정을 perl로 구현하고, 실제 공격이 포함된 트래픽을 사용하여 검증한다. 하지만 결과가 확연히 증명되지는 않는데, 이는 학습과정의 부족과 실제에 가까운 트래픽의 사용으로 인해 나타나는 현상으로 연구의 본질을 흐리지는 않는다고 판단된다. 오히려 실제 상황을 가정했을 때 접근이나 적용을 판단함에 관리자의 의견을 반영할 수 있으므로 공격의 탐지와 판단에 유연성을 증대시킬 수 있다. 본 연구는 실시간 네트워크의 상황 파악이나 네트워크에서의 신종 공격 탐지 및 분류에 응용가능할 것으로 기대된다.

스마트 제조 환경에서의 이상징후 탐지 기술 현황

  • 김기현
    • 정보보호학회지
    • /
    • 제29권2호
    • /
    • pp.36-47
    • /
    • 2019
  • 4차 산업혁명이 본격화됨에 따라 스마트 제조 환경으로 변화하면서 제조 공장은 설비제어가 자동화되고 산업용 이더넷과 TCP/IP 기반으로 네트워크 연결되어 통합 운영되고 있으며 본사 비즈니스망의 MES, ERP, PLM 등과 연계되면서 랜섬웨어 등 악성코드 유입 및 외부 사이버 공격으로부터의 보안 위협이 높아지고 있다. 본 논문에서스마트 제조 공장에 대한 사이버 침입을 탐지하고 대응하기 위해 스마트 제조 환경에서의 이상징후 탐지 기술 현황을 분석한다. 먼저 ICS(Industrial Control System)에 대한 이상징후 탐지를 위해 ICS 위협 경로를 분석하고 스마트 제조 네트워크에서 사용되는 산업용 이더넷 프로토콜을 살펴본다. 다음으로 국내 제어망 이상징후 탐지 체계 구축 동향을 분석하고 제어망 이상징후 탐지 기술을 분류한다. 마지막으로 (주)앤앤에스피에서 과학기술정보통신부 과제로 수행하고 있는 "선제적인 제조공정 이상징후 인지" 연구과제의 수행 현황을 살펴본다.

무아레 현상을 이용한 영상처리 기반의 이상징후 탐지 솔루션 (The Anomaly Detection Solution based on Image Processing using Moire)

  • 이재욱;강혁;이근호;이창준
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2016년도 춘계학술발표대회
    • /
    • pp.286-288
    • /
    • 2016
  • 기존에 카메라는 침입자를 탐지할 때 정확성이 부족하고 열화상카메라는 가격이 비싸고 열 측정이 되지 않는 상황일 경우 감시가 힘들다는 단점이 있다. 이러한 단점을 보완하기 위해 빛의 간섭 및 회절에 의한 무아레 현상을 이용하여 이상징후 탐지 및 활용방안을 제시하려한다. 지형의 높낮이 및 형상을 저장하고 침입자가 탐지되었을 경우 무아레 이미지를 기반으로 처음 설정했던 지형 데이터와 비교하여 외부인의 침입을 탐지한다. 미세한 움직임이나 변화에도 크게 이미지가 변하는 무아레 현상의 성질을 이용하여 이상징후를 탐지하는 것이다. 이상징후를 탐지 했을 경우 보안 담당관에게 알림을 전송하거나 경보를 울리는 이상징후 탐지 솔루션 및 활용방안을 제안한다.

엔트로피 기반의 이상징후 탐지 시스템 (An Anomalous Event Detection System based on Information Theory)

  • 한찬규;최형기
    • 한국정보과학회논문지:정보통신
    • /
    • 제36권3호
    • /
    • pp.173-183
    • /
    • 2009
  • 본 논문에서는 엔트로피에 기반한 이상징후 탐지 시스템을 제안한다. 엔트로피는 시스템의 무질서정도를 측정하는 지표로써, 이상징후 출현 시 네트워크의 엔트로피는 급증한다. 네트워크를 IP와 포트번호를 기준으로 분류하여, 패킷별로 역학을 관찰하고 엔트로피를 각각 측정한다. 분산서비스거부공격이나 웜, 스캐닝 등의 네트워크 공격 출현 시 패킷 교환과정이 정상적일 때와는 다르므로 엔트로피를 통하여 기존기법 보다 높은 탐지율로 이상징후를 탐지할 수 있다. 본 논문에서는 다수의 원과 서비스거부공격을 포함한 데이터 셋을 수집하여 제안기법을 검증하였다. 또한 지수평활법, Holt-winters 등의 시계열예측 기법과 주성분분석을 이용한 이상징후 탐지 기법과 정확도 측면에서 비교한다. 본 논문에서 제안한 기법으로 웜, 서비스거부공격 등의 이상징후 탐지에 있어 오탐지율을 낮출 수 있다.

시계열 모델 기반 트래픽 이상 징후 탐지 기법에 관한 연구 (A Study on Traffic Anomaly Detection Scheme Based Time Series Model)

  • 조강홍;이도훈
    • 한국통신학회논문지
    • /
    • 제33권5B호
    • /
    • pp.304-309
    • /
    • 2008
  • 본 논문에서는 시계열 예측 모델을 이용하여 웡 또는 바이러스 등과 같은 공격 트래픽에 의해 네트워크상에 발생할 수 있는 트래픽 이상 징후를 탐지할 수 있는 예측 모델 기반 트래픽 이상 징후 탐지 기법을 제안한다. 제안 기법은 비교적 정확한 예측모델로 알려져 있는 ARIMA 모델을 이용하였고 이상 징후 여부를 확률값으로 변화하여 확률 임계값에 따라 이상 징후를 탐지하도록 하여 그 성능을 극대화할 수 있도록 하였다. 이를 위해 제안 기법을 네트워크상에 발생시킨 웜과 같은 비정상 공격 트래픽을 포함한 전체 트래픽과 웹 트래픽에 적용하여 트래픽의 이상 징후를 신뢰성 있는 수준에서 탐지함을 보여주었다. 이 기법을 네트워크 기반의 침입탐지시스템에 적용할 강제 큰 효과 가져올 수 있을 것이다.

Anomaly Event Detection Algorithm of Single-person Households Fusing Vision, Activity, and LiDAR Sensors

  • Lee, Do-Hyeon;Ahn, Jun-Ho
    • 한국컴퓨터정보학회논문지
    • /
    • 제27권6호
    • /
    • pp.23-31
    • /
    • 2022
  • 최근 코로나 19가 유행하고 더불어 고령화 시대와 1인 가구 증가로 인해 가구 구성원이 집에서 다양한 활동을 하며 머무는 시간이 매우 증가하였다. 본 연구에서는 노인을 포함한 1인 가구의 구성원들의 이상 징후를 탐지하기 위한 알고리즘을 제안한다. 홈 CCTV를 통한 영상 센서 알고리즘, 스마트폰에 내장된 가속도 센서를 이용한 활동 센서 알고리즘 및 2D LiDAR 센서 기반의 LiDAR 센서 알고리즘을 이용한 사람의 움직임 및 낙상 탐지 결과를 기반으로 이상 징후를 탐지하는 알고리즘들을 제안한다. 하지만, 각 단일 센서 기반 알고리즘은 센서가 가진 한계점으로 인해 특정 상황에서 이상징후를 탐지하기 어려운 단점을 가지고 있다. 그에 따라 단일 센서 기반 알고리즘만을 사용한 것보다 다양한 상황에서 이상 징후를 탐지하기 위해 각 알고리즘을 결합하는 융합 방식을 제안한다. 우리는 각 센서로 수집한 데이터를 통해 알고리즘들의 성능을 평가하고, 특정 시나리오들을 통하여 알고리즘 하나만 사용하여 정확한 이상 징후를 탐지할 수 없는 상황에서도 융합 방식을 통해 서로 보완하여 정확한 이상 징후를 효율적으로 탐지할 수 있음을 보여준다.

사물인터넷 센서와 인공지능을 이용한 이상 징후 차단 보안관리 시스템 (Security Management System to Block Abnormal Symptoms Using IoT Sensors and Artificial Intelligence)

  • 강윤모;강윤호;신재성;유승형;유상오
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2020년도 추계학술발표대회
    • /
    • pp.897-900
    • /
    • 2020
  • 본 논문은 사물인터넷과 인공지능을 융합하여 영상 데이터양을 감소시켜 실시간 모니터링의 어려움을 해소하고, 불법 침입 및 이상징후 차단, 화재 징후를 효율적으로 포착하고 관리하여 범죄 차단 및 이상징후 차단을 목적으로 설계한 시스템을 소개하고 있다.

수배전설비 진단 및 보수점검

  • 신화영;이규복
    • 전기기술인
    • /
    • 제267권11호
    • /
    • pp.30-34
    • /
    • 2004
  • 최근에는 설비의 이상징후를 포착함으로써 사고를 예지하고 치명적인 상태로 진전되기 전에 보완하는 이른바 예측보전 기술을 중심으로 하는 사고예방 방향으로 변화되어 가고 있다. 이 예측보전기술은 기기의 상태를 정량적으로 파악하여 이상징후를 초기단계에서 검지하는 이상예지진단과 기기성능의 경녕적인 변화에 착안한 노화진단 등을 중심으로 하고 있다.

  • PDF

LSTM-Autoencoder를 이용한 부유식 풍력터빈 블레이드 피치 시스템의 이상징후 감지 (Anomaly detection in blade pitch systems of floating wind turbines using LSTM-Autoencoder)

  • 조성필
    • 항공우주시스템공학회지
    • /
    • 제18권4호
    • /
    • pp.43-52
    • /
    • 2024
  • 본 논문은 부유식 풍력터빈의 블레이드 피치 시스템에서 발생하는 이상을 조기에 감지하기 위한 LSTM-Autoencoder 모델 기반의 이상징후 감지 시스템을 설명한다. 발전소 모니터링 시스템에 활용되는 센서 데이터는 주로 시계열 데이터로 구성되며, LSTM 네트워크는 이러한 시계열 데이터를 분석하기 위해 두 개의 단방향 LSTM 네트워크로 구성된다. 이를 통해 순차 데이터에 숨겨진 장기 의존성을 효과적으로 발견할 수 있다. 한편, 오토인코더 메커니즘은 정상상태 데이터로부터만 학습하여 이상상태를 분류될 수 있기 때문에 이 두 가지 네트워크를 결합하여 시스템에 발생하는 이상징후를 효과적으로 감지할 수 있다. 제안된 프레임워크의 효과를 입증하기 위해 풍력 터빈 모델에서 수집한 실제 다변량 시계열 데이터셋을 적용하였다. LSTM-AE 모델은 높은 이상징후 감지 정확도를 달성하여 우수한 성능을 보였다.

스마트 홈 사용자를 위한 라이다, 영상, 오디오 센서를 이용한 인공지능 이상징후 탐지 알고리즘 (Intelligent Abnormal Situation Event Detections for Smart Home Users Using Lidar, Vision, and Audio Sensors)

  • 김다현;안준호
    • 인터넷정보학회논문지
    • /
    • 제22권3호
    • /
    • pp.17-26
    • /
    • 2021
  • 최근 COVID-19가 확산하고 외출 자제 권고와 같은 방역지침에 따라 집에서 생활하는 시간이 늘고 있다. 이에 따라 집에서 생활하는 1인 가구가 증가하고 있지만 1인 가구는 다인 가구보다 집 안에서 위급한 상황이 발생할 때 외부에 알리기 어렵다. 본 연구는 집안에서 발생하는 다양한 상황을 라이다, 영상, 음성 센서로 수집하고 센서에 따른 데이터를 각각의 알고리즘을 통해 분석하였다. 이를 이용해 위급상황 등의 비정상 패턴을 분석하여 사람의 이상징후를 탐지하는 연구를 진행했다. 각 센서에 따른 사람의 이상징후를 탐지하는 인공지능 알고리즘을 연구하였으며 센서에 따른 이상징후 탐지 정확도를 측정했다. 또한, 본 연구는 다양한 상황에 대한 센서의 탐지 가능 여부를 실험하여 센서 간의 장단점을 보완한 융합 방식을 제안한다.