Acknowledgement
본 논문의 기초연구 단계에서 소중한 의견을 주신 NTNU의 Torgeir Moan 및 Zhen Gao 교수님께 감사드립니다. 이 논문은 Equinor의 재원으로 MIT-NTNU-Statoil Wind Turbine Program의 지원을 받아 수행된 기초연구사업임. 이 논문은 2024년도 정부(교육부)의 재원으로 한국연구재단의 지원을 받아 수행된 기초연구사업임(과제번호: 2022R1A6A1A03056784).
References
- I. Dinwoodie, D. McMillan, M. Revie, I. Lazakis, Y. Dalgic, "Development of a combined operational and strategic decision support model for offshore wind," Energy Procedia, vol. 35, pp. 157-166, 2013. https://doi.org/10.1016/j.egypro.2013.07.169
- J.B. Gayo, Reliability-focused Research on Optimizing Wind Energy System Design, Operation and Maintenance: Tools, Proof of Concepts, Guidelines & Methodologies for a New Generation, Final Publishable Summary of Results of Project ReliaWind, 2011.
- J. Carroll, A. McDonald, D. McMillan, "Failure rate, repair time and unscheduled O&M cost analysis of offshore wind turbines," Wind Energy, vol. 19, pp. 1107-1119, 2016. https://doi.org/10.1002/we.1887
- Cho S, Bachynski E, Rasekhi Nejad A, Gao Z, Moan T. "Numerical modeling of hydraulic blade pitch actuator in a spar-type floating wind turbine considering fault conditions and their effects on global dynamic responses," Wind Energy, vol. 23, no. 2, pp. 370-390, 2020. https://doi.org/10.1002/we.2438
- S. Cho, Z. Gao, T. Moan, "Model-based fault detection, fault isolation and fault tolerant control of a blade pitch system in floating wind turbines," Renewable Energy, vol. 120, pp. 306-321, 2018. https://doi.org/10.1016/j.renene.2017.12.102
- R. Isermann, Fault-diagnosis Systems: an Introduction from Fault Detection to Fault Tolerance, Springer Science & Business Media, 2006.
- A. Kusiak, A. Verma, "A data-driven approach for monitoring blade pitch faults in wind turbines," IEEE Transactions on Sustainable Energy, vol. 2, pp. 87-96, 2011. https://doi.org/10.1109/TSTE.2010.2066585
- J. H. Choi, "A review on prognostics and health management and its applications," Journal of Aerospace System Engineering, vol. 8, no. 4, pp. 7-17, 2014. https://doi.org/10.20910/JASE.2014.8.4.007
- A. Kusiak, W. Li, "The prediction and diagnosis of wind turbine faults," Renewable Energy, vol. 36, no. 1, pp. 16-23, 2011. https://doi.org/10.1016/j.renene.2010.05.014
- L. Wang, Z. Zhang, H. Long, J. Xu, R. Liu, "Wind turbine gearbox failure identification with deep neural networks," IEEE Transactions on Industrial Informatics, vol. 13, no. 3 pp. 1360-1368, 2016. https://doi.org/10.1109/TII.2016.2607179
- A.S. Zaher, S.D. McArthur, D.G. Infield, Y. Patel, "Online wind turbine fault detection through automated SCADA data analysis," Wind Energy: An International Journal for Progress and Applications in Wind Power Conversion Technology, vol. 12, no. 6, pp. 574-593, 2009. https://doi.org/10.1002/we.319
- A. Kusiak, A. Verma, "Analyzing bearing faults in wind turbines: a data-mining approach," Renewable Energy, vol. 48, pp. 110-116, 2012. https://doi.org/10.1016/j.renene.2012.04.020
- S. Cho, M. Choi, Z. Gao, T. Moan, "Fault detection and diagnosis of a blade pitch system in a floating wind turbine based on Kalman filters and artificial neural networks," Renewable Energy, vol. 169, pp. 1-13, 2021. https://doi.org/10.1016/j.renene.2020.12.116
- M. Bach-Andersen, B. Romer-Odgaard, O. Winther, "Deep learning for automated drivetrain fault detection," Wind Energy, vol. 21, no. 1, pp. 29-41, 2018. https://doi.org/10.1002/we.2142
- R. Rahimilarki, Z. Gao, N. Jin, A. Zhang, "Convolutional neural network fault classification based on time-series analysis for benchmark wind turbine machine," Renewable Energy, vol. 185, pp. 916-931, 2022 https://doi.org/10.1016/j.renene.2021.12.056
- N. Dervilis, M. Choi, S.G. Taylor, R.J. Barthorpe, G. Park, C.R. Farrar, K. Worden, "On damage diagnosis for a wind turbine blade using pattern recognition," Journal of Sound and Vibration, vol. 333, no. 6, pp. 1833-1850, 2014. https://doi.org/10.1016/j.jsv.2013.11.015
- G. Jiang, P. Xie, H. He, J. Yan, "Wind turbine fault detection using a denoising autoencoder with temporal information," IEEE/ASME Transactions on Mechatronics, vol. 23, no. 1, pp. 89-100, 2017. https://doi.org/10.1109/TMECH.2017.2759301
- S. Cho, J. Park, M. Choi, "Fault classification of a blade pitch system in a floating wind turbine based on a recurrent neural network," Journal of Ocean Engineering and Technology, vol. 35, no. 4, pp. 287-295, 2021. https://doi.org/10.26748/KSOE.2021.018
- Y. Cui, P. Bangalore, L. B. Tjernberg, "A fault detection framework using recurrent neural networks for condition monitoring of wind turbines," Wind Energy, vol. 24, no. 11, pp. 1249-1262, 2021. https://doi.org/10.1002/we.2628
- K. Dhibi, M. Mansouri, K. Bouzrara, H. Nounou, M. Nounou, "Enhanced Recurrent Neural Network for Fault Diagnosis of Uncertain Wind Energy Conversion Systems," Proc. of International Conference on Control, Decision and Information Technologies (CoDIT), Vol. 1, pp. 1330-1335, May 2022.
- H. D. Nguyen, K. P. Tran, S. Thomassey, M. Hamad, "Forecasting and Anomaly Detection approaches using LSTM and LSTM Autoencoder techniques with the applications in supply chain management," International Journal of Information Management, vol. 57, no. 102282, 2021.
- P. Malhotra, L. Vig, G. Shroff, P. Agarwal, "Long short term memory networks for anomaly detection in time series," Proc. of European Symposiumon Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN), pp. 89-94, 2015.
- J. Jonkman, S. Butterfield, W. Musial, G. Scott, Definition of a 5-MW Reference Wind Turbine for Offshore System Development Technical Report NREL/TP- 500-38060 USA, 2009.
- J. Jonkman, Definition of the Floating System for Phase IV of OC3 Technical Report NREL/TP-500-47535 USA, 2010.
- SINTEF Ocean, SIMO 4.15.0 User Guide, 2018.
- SINTEF Ocean, RIFLEX 4.15.0 User Guide, 2018.
- IEC 61400-1: Wind Turbines e Part 1: Design Requirements, International Electrotechnical Commission, 2005.
- IEC 61400-3: wind turbines e Part 3: design requirements for offshore wind turbines, International Electrotechnical Commission, 2005.
- J. Jonkman, L. Kilcher, TurbSim User's Guide Technical Report NREL USA, 2012.
- K. Hasselmann, T.P. Barnett, E. Bouws, H. Carlson, D.E. Cartwright, K. Enke, J.A. Ewing, H. Gienapp, D.E. Hasselmann, P. Kruseman, A. Meerburg, Measurements of wind-wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP), Erganzungsheft 8e12 (1973).
- K. Johannessen , T. Meling, S. Haver, "Joint distribution for wind and waves in the northern North Sea," International Journal of Offshore and Polar Engineering, vol. 12, no. 1, pp.1-8, 2001.
- G. Lloyd, G. Hamburg, "Guideline for the certification of wind turbines," GL Report, July 2010.
- D. P. Kingma, B. Jimmy "Adam: A method for stochastic optimization," arXiv, 1412.6980v9, 2014.