• Title/Summary/Keyword: 이상유체

Search Result 912, Processing Time 0.024 seconds

Numerical Study on Feeding Efficiency in Sand Dollar Aggregation (연잎성게의 군집 형태에 따른 포식 효율의 수치적 연구)

  • O, Gwang-Seok;Kim, Jong-Am
    • Proceeding of EDISON Challenge
    • /
    • 2013.04a
    • /
    • pp.310-315
    • /
    • 2013
  • 연잎성게가 몸체의 방향을 유입류에 평행하게 맞추어 포식하는 이유에 대해서는 크게 유체역학적인 설명과 생태학적인 설명이 양립하고 있다. O'Neill과 Nakamura와 같은 연구자들에 의해 연잎성게의 이러한 행태를 유체역학의 관점에서 설명할 수 있지만, 정작 셋 이상의 연잎성게 군집의 포식 효율에 대해서는 개체 수에 기반을 둔 생태학적 관점에 의존하고 있다. 따라서 본 연구에서는 연잎성게 군집 내에서의 개체들의 배열을 모델링하고, 다양한 군집 배열에서 개체들의 포식 효율을 EDISON_전산열유체 시스템을 활용해 분석하였다. 특히 포식 효율을 결정하는 과정에서 얇은 익형 이론을 이용함으로써 포식효율을 결정하는 유체역학적 특성이 양력계수임을 확인하였다.

  • PDF

Induction Motor Control Method for Fluid Load (유체부하를 갖는 유도기제어)

  • Park, Joon-Sung;Nam, Kwang-Hee
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.265-268
    • /
    • 2006
  • 인버터의 개발에 앞서 살펴야 할 것 중 하나로 부하의 종류이다 여기에서는 유체부하를 가지는 경우이다 경제적인 측면과 성능을 고려하여 마이크로컨트롤러(PIC18F4431)를 결정하였다. 또한 여기에서는 전반적인 인버터의 제어를 다루기보다는 유체부하에서 발생하기 쉬운 과부하상태시의 간단한 제어방안을 다루었다 유도기제어에 있어서 유체부하를 가지는 경우 갑작스러운 유체부하의 증가가 발생할 수 있다. 유도기에서 이와 같은 과부하가 발생할 경우 전압과 전류의 위상차는 줄어들게 되고 전류는 증가하게 되며 유도기의 실제 속도와 인버터의 지령치는 벌어지게 된다. 지속적으로 위상차를 감시하여 과부하 상태를 판별할 수 있으며 과부하 상태 시 속도를 변화시켜 실제 속도를 정상상태와 비슷하게 유지시켜준다.

  • PDF

Modeling for gaseous methane/liquid oxygen combustion processes at supercritical pressure (초임계 압력상태의 기체메탄/액체산소 연소과정 해석)

  • Kim, Tae-Hoon;Kim, Yong-Mo;Kim, Seong-Ku
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.85-88
    • /
    • 2010
  • This study has been mainly motivated to numerically model the supercritical mixing and combustion processes encountered in the liquid propellant rocket engines. In the present approach, turbulence is represented by the extended $k-{\varepsilon}$ turbulence model. To account for the real fluid effects, the propellant mixture properties are calculated by using SRK (Souve-Redlich-Kwong) equation of state. In order to realistically represent the turbulence-chemistry interaction in the turbulent nonpremixed flames, the flamelet approach based on the real fluid flamelet library has been adopted. Based on numerical results, the detailed discussions are made for the real fluid effects and the precise structure of gaseous methane/liquid oxygen coaxial jet flame.

  • PDF

Density Anomalies of Generalized van der Waals Fluid (일반화된 van der Waals 유체의 밀도 비이상성)

  • Yeo, Sang-Do;Debenedetti, Pablo G.
    • Applied Chemistry for Engineering
    • /
    • v.7 no.4
    • /
    • pp.809-812
    • /
    • 1996
  • Generalized van der Waals equation of state combined with the core-softening theory and temperature dependent repulsive and attractive terms exhibit the anomalous thermal expansion, i.e. density anomaly. Density maxima occur at both positive and negative pressure when the hard-core diameter decreases with increasing temperature, $db_r/dT_r<0$, and at negative pressure when the repulsive force increases with increasing temperature, $da_r/dT_r>0$.

  • PDF

Fluid Inclusions Trapped in Tourmaline from the Daeyou Pegmatite Deposit, Jangsu-Gun, Jeollabukdo (전북 장수군 대유 페그마타이트광산의 전기석에 포획된 유체포유물)

  • Lee, Ju-Youn;Eom, Young-Bo;Nam, Bok-Hyun;Hwang, Byoung-Hoon;Yang, Kyoung-Hee
    • Journal of the Mineralogical Society of Korea
    • /
    • v.20 no.1 s.51
    • /
    • pp.7-19
    • /
    • 2007
  • Four types of fluid inclusions are trapped within tourmaline from Daeyou pegmatite, Jangsu-Gun, Jeonllabukdo. They range $5{\sim}100\;{\mu}m$ in size and are grouped into I, II, III, and IV based on the phase behavior at the room temperature: (1) Type I inclusions are liquid-rich and NaCl equivalent salinity ranged $0{\sim}12\;wt%$, and the homogenization temperatures (Th) ranged $181{\sim}230^{\circ}C$ with eutectic temperatures (Te) $-54{\sim}-22^{\circ}C$. (2) Type II inclusions are vapor-rich and salinity ranged $3{\sim}8\;wt%$ NaCl, and Th ranged $177{\sim}304^{\circ}C$ also showing Te $-54{\sim}-29^{\circ}C$. (3) Type III inclusions contain a halite daughter mineral with $31{\sim}40\;wt%$ NaCl, Th $230{\sim}328^{\circ}C$. More than 90% of Type III homogenize by halite dissolution and are spatially associated with silicate melt inclusions. (4) Type IV inclusions are $CO_{2}$-bearing containing various daughter minerals such as sylvite and/or halite. The density of $CO_{2}$ system within the Type IV is $0.80{\sim}0.75\;g/cm^{3}$, Th $190{\sim}317^{\circ}C$, and salinity $2{\sim}35\;wt%$ NaCl. Type III fluid inclusions, considered as the earliest fluid, formed from the fluid exsolved from the crystallizing pegmatite. It is suggested that Type II fluid in the central part of tourmaline were exsolved earlier than Type I fluids in the margin indicating salinity fluctuation during the growth of tourmaline. It implies the fluctuation of the pressure since the salinity of fluid exsolved from the crystallizing melt is governed by the pressure. The last fluid was Type IV, which may be derived from the nearby limestone and metasedimentary rocks. It is suggested that Daeyou pegmatite containing muscovite without miarolitic cavities was formed by the partial melting resulted from the regional metamorphism. Subsequently, the exsolving fluids from the crystallizing melt were trapped in tourmaline at high pressure condition. The exsolved fluids contain various components such as $CaCl_{2}\;and\;MgCl_{2}$ as well as NaCl and KCl. The exsolution began at least at $2.7{\sim}5.3\;kbar\;and\;230{\sim}328^{\circ}C$ with the pressure fluctuation.

Calyx Abscission in Pear (Pyrus spp.) Cultivars and Its Inheritance (배 품종별 꽃받침 탈리와 유전 양식)

  • Kang, Sam-Seok;Kim, Yoon-Kyeong;Choi, Jang-Jeon;Cho, Kwang-Sik;Won, Kyeong-Ho;Lee, Han Chan;Yu, Duk Jun;Lee, Hee Jae
    • Horticultural Science & Technology
    • /
    • v.31 no.6
    • /
    • pp.790-797
    • /
    • 2013
  • During pear fruit development, calyx can abscise from fruitlet following petal fall. The calyx abscission varies with pear cultivars. The presence of calyx on pear fruit makes the fruit shape calyx end protruded. In the present study, the degrees of the calyx abscission were examined in 120 Southern-type Asian pear (Pyrus pyrifolia), 52 Nothern-type Asian pear (P. ussuriensis), and 34 European pear (P. communis) cultivars, and its inheritance was investigated using cross combinations between the Southern-type Asian pear cultivars showing different degrees of calyx abscission. Majority of the cultivars produced < 10% or > 90% calyx-perpetual fruit, but the cultivars producing both calyx-perpetual and -deciduous fruit were in minor frequency. The cultivars producing < 10% calyx-perpetual fruit were in higher frequency in Southern-type Asian, Nothern-type Asian, and European pears in that order, while those producing calyx-perpetual fruit were in higher frequency in European, Nothern-type Asian, and Southern-type Asian pears in that order. In the cross between the parents producing < 10% calyx-perpetual fruit, most of the $F_1$ seedlings also produced < 10% calyx-perpetual fruit. In the cross between the parents producing > 90% calyx-perpetual fruit, on the contrary, most of the $F_1$ seedlings also produced > 90% calyx-perpetual fruit. When the paternal parent produced < 10% calyx-perpetual fruit, most of the $F_1$ seedlings also produced < 10% calyx-perpetual fruit regardless of the degree of calyx abscission in the maternal parent. When the cross was between the maternal parent producing < 10% calyx-perpetual fruit and the paternal parent showing different degrees of calyx abscission, the $F_1$ seedlings showed similar degrees of the calyx abscission to those in the paternal parent. These results suggest that the characteristics of the calyx abscission is influenced more greatly by the paternal parent than by the maternal parent, and the calyx abscission in Southern-type Asian pears is a qualitative trait which is governed by dominant gene(s).

Finite Element Analysis for Evaluation of Viscous and Eccentricity Effects on Fluid Added Mass and Damping (유체 부가질량 및 감쇠 결정시 점성 및 편심 영향에 대한 유한요소해석)

  • 구경회;이재한
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.2
    • /
    • pp.21-27
    • /
    • 2003
  • In general, simple fluid added mass method is used for the seismic and vibration analysis of the immersed structure to consider the fluid-structure interaction effect. Actually, the structural response of the immersed structure can be affected by both the fluid added mass and damping caused by the fluid viscosity. These variables appeared as a consistent matrix form with the coupling terms. In this paper, finite element formula for the inviscid fluid case and viscous fluid case are derived from the linearized Navier Stoke's equations. Using the finite element program developed in this paper, the analyses of fluid added mass and damping for the hexagon core structure of the liquid metal reactor are carried out to investigate the effect of fluid viscosity with variation of the fluid gap and Reynolds number. From the analysis results, it is verified that the viscosity significantly affects the fluid added mass and damping as the fluid gap size decrease. From the analysis results of eccentricity effect on the fluid added mass and damping of the concentric cylinders, the fluid added mass increase as the eccentricity increases, however the fluid damping increases only when the eccentricity is very severe.

EXACT RIEMANN SOLVERS FOR COMPRESSIBLE TWO-PHASE SHOCK TUBE PROBLEMS (압축성 이상(二相) 충격파관 문제에 대한 엄밀 리만해법)

  • Yeom, Geum-Su;Chang, Keun-Shik
    • Journal of computational fluids engineering
    • /
    • v.15 no.3
    • /
    • pp.73-80
    • /
    • 2010
  • In this paper, we present the exact Riemann solver for the compressible liquid-gas two-phase shock tube problems. We hereby consider both isentropic and non-isentropic two-phase flows. The shock tube has a diaphragm in the mid-section which separates the liquid medium on the left and the gas medium on the right. By rupturing the diaphragm, various waves are observed on the phasic field variables such as pressure, density, temperature and void fraction in the form of rarefaction wave, shock wave and material interface (contact discontinuity). Both phases are treated as compressible fluids using the linearized equation of state or the stiffened-gas equation of state. We solve several shock tube problems made of a high/low pressure in the liquid and a low/high pressure in the gas. The wave propagations are well resolved by the exact Riemann solutions.

Preparation of Porous Polypropylene Membrane by a Thermally Induced Phase Separation Method in Supercritical CO2 (CO2 초임계 유체에서 열식법을 이용한 다공성 폴리프로필렌 막의 제조)

  • Lee, Sang-Joon;Chung, Jaygwan G.
    • Korean Chemical Engineering Research
    • /
    • v.43 no.1
    • /
    • pp.16-20
    • /
    • 2005
  • Porous polypropylene membranes were prepared by a thermally induced phase separation method in super-critical $CO_2$, where polypropylene and Camphene were used as raw materials. The porosity of polypropylene membranes with 10 wt% polypropylene concentration was 78, 80, 73% by using methanol, ethanol, and n-buthanol as an analytical solvent, respectively. The tensile strength increased with an increasing polypropylene concentration, where it was $0.17kg_f/mm^2$ at 10 wt% polypropylene concentration. The extraction rate for Camphene increased with time and Camphene was removed 94% in 5 min. It increased with an increasing temperature and was 99% at $45^{\circ}C$, however, decreased with an increasing temperature at higher than $45^{\circ}C$. The extraction rate increased with an increasing pressue up to 150 bar, however, decreased slightly with an increasing pressure over 150 bar. The extraction rate had a relation with the solubility of Camphene in supercritical $CO_2$.

Influence of Fluid Height and Structure width ratio on the Dynamic Behavior of Fluid in a Rectangular Structure (사각형 구조물에 저장된 유체의 동적거동에 유체높이와 구조물 폭의 비가 미치는 영향)

  • Park, Gun;Yoon, Hyungchul;Hong, Ki Nam
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.5
    • /
    • pp.126-134
    • /
    • 2020
  • In the case of an earthquake, the fluid storage structure generates hydraulic pressure due to the fluctuation of the fluid. At this time, the hydraulic pressure of the fluid changes not only the peaked acceleration of the earthquake but also the sloshing height of the fluid free water surface. Factors influencing this change in load include the shape of the seismic wave, the maximum seismic strength, the size of the fluid storage structure, the width of the structure, and the height of the fluid. In this study, the effect of the ratio between the height of the fluid and the width of the structure was investigated on the fluctuation characteristics of the fluid. 200mm and 140mm of fluid were placed in a water storage tank with a width of 500mm, and a real seismic wave was applied to measure the shape of the fluctuation of the fluid free water surface. The similarity between the experiment and the analysis was verified through the S.P.H(Smoothed Particle Hydrodynamic) technique, one of the numerical analysis techniques. It was confirmed that the free water surface of the fluid showed a similar shape, through comparison of experiment and analysis. And based on this results, SPH technique was applied to analyze the fluctuation shape of the fluid free water surface while varying the ratio between the fluid height and the structure width. An equation to predict the maximum and minimum heights of the fluid free water surface during an earthquake was proposed, and it was confirmed that the error between the maximum and minimum heights of the fluid free water surface predicted by the proposed equation was within a maximum of 3%.