• Title/Summary/Keyword: 이상유동 양식

Search Result 40, Processing Time 0.019 seconds

An Experimental Study on the Flow Characteristics Inside an Open Two-Phase Natural Circulation Loop (개방된 2상 자연순환 회로내의 유동특성에 관한 실험적 연구)

  • 경익수;이상용
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.5
    • /
    • pp.1313-1320
    • /
    • 1993
  • Flow patterns inside the riser section and the effects of the heater inlet-and exit-restrictions, liquid charging level and the heater inlet subcooling on the flow characteristics inside an open two-phase natural circulation loop were studied experimentally. Three basic circulation modes were observed ; periodic circulation (A)(flow oscillations with incubation(no boiling) period), continuous circulations(stable operation mode with no flow oscillations), and periodic circulation (B) (flow oscillations with continuous boiling). The circulation rate increases and then decreases with the increase of the heating rate and the maximum circulation rate appears with the continuous circulation mode. The decrease of the inlet-restriction or the increase of the exitrestriction destabilizes the system. When the liquid charging level or the inlet subcooling decreases, the continuous circulation mode starts at the lower heating rate and the system is stabilized.

Effect of Various Shapes of Mixer Geometry on Two-Phase Flow Patterns in a Micro-Channel (마이크로 채널 내 혼합부 형상이 2상 유동 양식에 미치는 영향에 대한 연구)

  • Lee, Kwan Geun;Lee, Jun Kyoung;Park, Taehyun;Kim, Gyo Nam;Park, Eun Ju
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.2
    • /
    • pp.75-80
    • /
    • 2015
  • The effect of inlet mixer geometries on the two-phase flow patterns in square micro-channel with $600{\times}600{\mu}m$ was investigated experimentally in this paper. The 4 different mixer configurations based on the Y, Impacting, and two T types (gas and liquid inlets were switched) were used. The test fluids were nitrogen and water. The liquid and gas superficial velocities were 0.01~10 m/s and 0.1~100 m/s, respectively. Several distinctive flow patterns, namely, annular, slug-annular, slug, slug-bubbly, bubbly, and churn flow could be seen. The flow pattern maps for each mixer were suggested, and it can be concluded that two-phase flow patterns are not very sensitive to the mixer geometries. But the mixing behaviors of gas and liquid for each mixer were different for slug and bubbly flow. Thus, the characteristics of slug and bubble for each case were not same.

Flow pattern characteristics in vertical two phase flow by PDF and signals from conductance probe (確率密度函數와 電導 Prode信號에 의한 垂直二相流의 流動樣式特性)

  • Son, Byung-Jin;Kim, In-Suhk;Lee, Jin
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.6
    • /
    • pp.814-822
    • /
    • 1986
  • Flow patterns and its transitions in vertical two phase flow of air-water isothermal flow are identified objectively by void output signals and moments computed from the Probability Density Function which is associated with the statistical measurement for time average local void fractions using conductance probe. It has been shown that the probe output signals, PDF distributions and its moments are deterministic criteria of flow pattern and transition classification.

Identification of Two-phase Flow Patterns in a Horizontal Tubular Condenser (수평 응축관내 2상유동양식의 판별에 관한 연구)

  • Lee, S.C.;Han, Y.O.;Shin, H.S.;Lee, H.D.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.5 no.1
    • /
    • pp.65-72
    • /
    • 1993
  • An experiment has been carried out to identify flow patterns in a horizontal condensing flow with R-113. Characteristics of flow patterns were determined based upon a statistical analysis of differential pressure fluctuations at an orifice. The probability density function and power spectral density function of instantaneous pressure drop curves for various flow conditions were obtained. In comparison to the results of air-water flows, the flow patterns in a condensing flow such as annular, wavy, slug and plug could be identified. The experimental data determined by this technique were compared with the flow pattern maps suggested by other investigators. The result indicates that the statistical characteristics of differential pressure fluctuations at an orifice may be a useful tool for identifying flow patterns both in condensing flows and in adiabatic two-phase flows.

  • PDF

2상유동의 실험적 기법

  • 이상천
    • Journal of the KSME
    • /
    • v.30 no.4
    • /
    • pp.331-340
    • /
    • 1990
  • 본 글에서는 2상유동의 주요 인자들에 대한 측정기법을 소개하였다. 이를 위하여 가장 중요한 기본인자인 유동양식 판별법, 건도 및 질량유량 측정법, 압력강화 측정법과 기공률 측정법을 다 루었다. 이 외에도 2상유동의 실험인자는 다양하나 본 글에서는 지면관계로 열전달 계수, 계면 파구조, entrainment rate, 계면 및 벽면전단응력과 액적 및 기포의 크기 등 부차적인 유동변수 의 측정법을 다루지 못한 것을 아쉽게 생각하며 다음에 소개할 기회를 기대한다.

  • PDF

A Study on Two-Phase Flow Pattern of Pure Refrigerants R134a and Rl23 and Zeotropic Mixture R134a/R123 in Horizontal Tubular (R134a 및 Rl23과 비공비 혼합냉매 R134a/R123의 수평관내 이상유동양식에 관한 연구)

  • Lim, Tae-Woo;Kim, Jun-Hyo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.8
    • /
    • pp.1033-1041
    • /
    • 2003
  • Two-phase flow pattern data during horizontal in-tube flow boiling are presented for pure and mixed refrigerants of R134a and Rl23, The flow pattern is observed through tubular sight glasses located at inlet and outlet of the test section, which is made of a stainless steel tube, 2m long with 10mm I.D., 1.5mm wall thickness. The obtained results are compared with the available various correlations for flow pattern. The flow pattern map of Hashizume was in good agreement with the present data except the region of low mass velocity. Weisman flow pattern map was also known to satisfactorily predict data for refrigerants in the region of annular flow. In this study, the flow pattern are simply classified into two groups; stratified(including intermittent, stratified and stratified-wavy) flow and annular flow. The transition quality from stratified to annular flow was obtained by modifying the liquid Froude number.

Gas-Liquid Two-Phase Flow at Hyper-Gravity Conditions (과중력 환경에서의 기액이상류)

  • Choi, Bu-Hong;Choi, Ju-Yeol
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.59-60
    • /
    • 2006
  • Some useful flow regime data are obtained from the experiments using the flight producing hyper-gravity(2g) conditions and on ground(1g) with the identical flow conditions. The flow regime data obtained at 1g and 2g conditions are compared with new dimensionless flow regime map using Fr, Bo and We number related with gravity, surface tension and inertia force.

  • PDF

Investigation of Bubble Behavior in Rectangular Microchannels for Different Aspect Ratios (다른 세장비의 사각 마이크로채널 내의 기포 거동에 관한 연구)

  • Choi, Chi-Woong;Yu, Dong-In;Kim, Moo-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.5
    • /
    • pp.471-479
    • /
    • 2010
  • The adiabatic two-phase flow in single rectangular microchannels was studied for different aspect ratios. The working fluids were liquid water and nitrogen gas. The hydraulic diameters of the rectangular microchannels were 490, 322, and $143\;{\mu}m$, and the widths of the microchannels were around $500\;{\mu}m$. The two-phase flow pattern was visualized using a high-speed camera and a long-distance microscope. This study was focused on bubble flow regimes. From the visualized images, the bubble velocity, bubble length, number of bubbles, and void fraction were evaluated. Further, the pressure drop in a single bubble was evaluated by using a unit cell model. The bubble velocity is proportional to the superficial velocity. Further, the relationship between the void fraction and the volumetric quality is linear. The pressure drop in a single elongated bubble is strongly related to the aspect ratio. Finally, the new correlation about the pressure drop of a single elongated bubble in the rectangular microchannel was proposed.

Two-Phase Flow Characteristics in an Adiabatic Horizontal Tube (단열 수평관내 이상류의 유동특성)

  • Choi, B.H.
    • Journal of Power System Engineering
    • /
    • v.8 no.1
    • /
    • pp.36-40
    • /
    • 2004
  • Two-phase loop systems using the latent heat capacity of their working fluids can meet the increasing power requirements and are well suited to thermal management systems of future large applications, due to its abilities to handle large heat loads and to provide them at uniform temperatures regardless of the changes in the heat loads. Therefore some experiments on the effect of the gas and liquid superficial velocities, $j_G,\;j_L$ on flow pattern transition, void fraction and frictional pressure loss were performed on a co-current air-water flow in an adiabatic horizontal tube. The flow patterns were depended on the superficial velocity of each phase. It snowed that the increasing $j_L$, resulted in a significant increase in the frictional pressure loss for all flow patterns, at a constant $j_G$. The experimental results were also evaluated with some of existing models and correlations.

  • PDF

Flow Characteristics of Vertical Upward Gas-Liquid Two-Phase Flow (수직상향 기액이상류의 유동특성)

  • Choi Bu-Hong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.4
    • /
    • pp.377-383
    • /
    • 2005
  • This paper deals with the flow characteristics of air-water two-phase flow in a vertical tube of 10mm I.D. and 600mm in length at an adiabatic condition. The obtained experimental data were covered with the liquid superficial velocity ranging from 0.095m/s to 2.56m/s. and the gas superficial velocity ranging from 0.032m/s to 21.08m/s. The effects of the gas and liquid superficial velocity on the flow pattern transitions, frictional pressure drop, and film thickness and gas-liquid interface roughness were also examined. It was found that the film thickness increased and the liquid film wave length was more longer with the liquid superficial velocity $j_L$ increasing at $j_G$ constant. It was also showed that the frictional pressure drops were experienced in three regions. namely increasing region(bubbly flow), decreasing region (Taylor bubble and slug flows) and re-increasing region (annular flow).