본 논문에서는 이차전지의 특성비교/분석을 위해 이산 웨이블릿 변환(DWT;discrete wavelet transform)과 웨이블릿 패킷 변환(WPT;wavelet packet transform)을 적용한 연구를 소개한다. 다해상도 분석(MRA; multi resolution analysis)의 시간-주파수 분석을 통해 저주파 성분(approximation;$A_n$)과 고주파 성분(detail;$D_n$)로 분해되는 것은 두 방법 동일하다. 하지만, 이산 웨이블릿 변환이 단순히 저대역 부분만 계속 분해하는 것과 달리 웨이블릿 패킷 변환은 저대역과 고대역을 모두 분해하여 높은 분해성능을 가지는 웨이블릿의 일반화이다. 웨이블릿 패킷 변환을 자세히 소개하고 이를 이차전지에 적용하여 이산 웨이블릿 변환과의 상관성을 정리하였다.
Proceedings of the Korean Information Science Society Conference
/
2000.10c
/
pp.481-483
/
2000
본 논문은 이산 웨이블릿 변환의 스케일러빌리티(scalability)를 활용한 VOD 트래픽 모델링에 대하여 소개한다. VOD는 사용자의 요구에 대하여 비디오 데이터를 제공하는 시스템이다. 비디오 데이터는 여러 가지 특징을 가지고 있다. 첫 번째 특징은 데이터 양이 상당히 많다는 점이다. 그리고 데이터 양이 비디오 데이터가 전달되는 시간축에 따라서 변화가 많다는 점이다. 그리고 두 번째 특징은 비디오 데이터는 전송되는 양상이 시간축에 대하여 거의 끊김이 없어야 한다는 점이다. 이러한 점들 때문에 VOD 트래픽을 정확하게 모델링하는 것은 상당히 어렵게 생각되었다. 이산 웨이블릿 변환(discrete wavelet transform)은 함수에 대한 근사이다. 우수한 점은 함수에 대한 근사가 상당히 용이하고 또 유연하다는 점이다. 다시 말하면 함수 근사의 정밀도를 용이하게 조절할 수 있다는 점이다. 또 다른 우수한 점은 시간과 공간 양쪽에 대하여 함수 근사를 할 수 있다는 점이다. 본 논문은 VOD server와 client 사이의 트래픽을 이산 웨이블릿 변환인 스케일러빌리티를 활용하여 모델링하여 server와 client 사이에 보다 효과적인 네트워크 트래픽 제어를 할 수 있음을 보인다.
Ji, Sang-Hun;Yang, Hyung-Jeong;Kim, Soo-Hyung;Kim, Young-Chul
Annual Conference of KIPS
/
2016.04a
/
pp.612-615
/
2016
본 논문에서는 EPIC(Electric Potential Integrated Circuit) 센서를 통해 추출된 동작신호에 대해 이산 웨이블릿 변환(Discrete Wavelet Transform : DWT)과 선형 판별분석(Linear Discriminant Analysis : LDA), Support Vector Machine(SVM)을 사용하는 동작 분류 시스템을 제안한다. EPIC 센서 신호에 대해 이산 웨이블릿 변환을 사용하여 웨이블릿 계수인 근사계수(approximation coefficients)와 상세계수(detail coefficients)를 구한 후, 각각의 웨이블릿 계수에 대해 특징 파라미터를 추출한다. 이 때, 특징 파라미터는 14개의 통계적 특징 추출 파라미터 중에 유전자 알고리즘(Genetic Algorithm : GA)을 통하여 선택한 우수한 특징 파라미터이다. 웨이블릿 계수들에서 추출한 특징 파라미터는 선형 판별분석을 적용하여 차원을 축소하고 SVM의 훈련 및 분류에 사용한다. 실험결과, 4가지 동작에 대한 EPIC 센서 신호분류에서 제안된 방법의 분류율이 99.75%로 원신호에 대한 HMM 분류율 97% 보다 높은 정확률을 보여주었다.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2002.05a
/
pp.594-597
/
2002
In this paper we study the effects of transmission noise on fixed-length coded wavelet coefficients. We use a posteriori detectors which include inter-bitplane information and determine which transmitted codeword was most likely corrupted into a received erroneous codeword We present a simple method of recovering from these errors once detected and demonstrate our restoration methodology on scalar-quantized wavelet coefficients that have been transmitted across a binary symmetric channel.
This paper presents an approach to detect premature ventricular contraction(PVC) using discrete wavelet transform and fuzzy neural network. As the input of the algorithm, we use 14 coefficients of d3, d4, and d5, which are transformed by a discrete wavelet transform(DWT). This paper uses a neural network with weighted fuzzy membership functions(NEWFM) to diagnose PVC. The NEWFM discussed in this paper classifies a normal beat and a PVC beat. The size of the window of DWT is $-31/360{\sim}+32/360$ second(64 samples) whose center is the R wave. Using the seven records of the MIT-BIH arrhythmia database used in Shyu's paper, the classification performance of the proposed algorithm is 99.91%, which outperforms the 97.04% of Shyu's analysis. Using the forty records of the M1T-BIH arrhythmia database used in Inan's paper, the classification performance of the proposed algorithm is 98.01%, which outperforms 96.85% of Inan's one. The SE and SP of the proposed algorithm are 84.67% and 99.39%, which outperforms the 82.57% and 98.33%, respectively, of Inan's study.
The Journal of the Korea institute of electronic communication sciences
/
v.19
no.1
/
pp.113-118
/
2024
In this paper, we propose an optimal wavelet in a system for canceling background noise of acoustic signals. This system performed Discrete Wavelet Transform(DWT) instead of the existing Short Time Fourier Transform(STFT) and then improved noise cancellation performance through a deep learning process. DWT functions as a multi-resolution band-pass filter and obtains transformation parameters by time-shifting the parent wavelet at each level and using several wavelets whose sizes are scaled. Here, the noise cancellation performance of several wavelets was tested to select the most suitable mother wavelet for analyzing the speech. In this study, to verify the performance of the noise cancellation system for various wavelets, a simulation program using Tensorflow and Keras libraries was created and simulation experiments were performed for the four most commonly used wavelets. As a result of the experiment, the case of using Haar or Daubechies wavelets showed the best noise cancellation performance, and the mean square error(MSE) was significantly improved compared to the case of using other wavelets.
The Journal of Korean Institute of Electromagnetic Engineering and Science
/
v.12
no.7
/
pp.1110-1114
/
2001
The discrete wavelet concept in the k-domain is applied to efficiently represent Green function of integral equations. Application of discrete wavelet concept to Green function in the k-domain can be implemented equivalently by using spatial domain variable-sized windows. The proposed method consists of constant Q-filtering, changing the center of coordinates, and transforming spatially filtered Green functions into those in the k-domain. A mathematical expression of Green function based on the discrete wavelet concept is derived and its characteristics are discussed.
Journal of the Korean Society for Nondestructive Testing
/
v.21
no.1
/
pp.54-61
/
2001
A software package to classify acoustic emission (AE) signals using the wavelet transform and the neural network was developed Both of the continuous and the discrete wavelet transforms are considered, and the error back-propagation neural network is adopted as m artificial neural network algorithm. The signals acquired during the 3-point bending test of specimens which have artificial defects on weld zone are used for the classification of the defects. Features are extracted from the time-frequency plane which is the result of the wavelet transform of signals, and the neural network classifier is tamed using the extracted features to classify the signals. It has been shown that the developed software package is useful to classify AE signals. The difference between the classification results by the continuous and the discrete wavelet transforms is also discussed.
본 논문에서는 의료 영상에 대한 저작권보호를 위한 새로운 워터마킹 알고리즘을 제안한다. 본 알고리즘에서는 이산 웨이블릿 변환 대신에 계산량이 적은 정수 웨이블릿 변환을 이용하였다. 본 논문에서는 정수 웨이블릿 공간에서 유사-잡음 수열을 워터마크로 삽입 하였다. 워터마크를 추출할 때 확산스펙트럼 기법을 이용하고 유사도는 공분산 수열에서 결정한다. 실험을 통하여 제안한 알고리즘이 노이즈, 압축 등 공격에 강인함을 보임을 확인하였다.
상이한 전기화학적 특성을 가진 단위 셀들을 미리 선별하여 팩의 안전한 운용 및 배터리 관리 시스템의 성능 향상을 위해 스크리닝(screening)은 필수적이다. 그러므로, 본 논문에서는 이산 웨이블릿 변환(DWT;discrete wavelet transform)을 이용한 리튬 이온 배터리 스크리닝 방법을 제안한다. 제안된 방식은 축소된 하이브리드 자동차용 전류프로파일을 통해 얻어진 충방전 전압을 이산 웨이블릿 변환에 적용하여 저주파 전압 성분과 고주파 전압 성분으로 분리하고, 각 단계별로 얻어진 성분들의 통계처리를 실시하여 스크리닝을 구현한다. 특히, 마지막 단계에서의 저주파 전압 성분과 고주파 전압 성분은 배터리의 State-of-health(SOH)를 예측하기 위한 성분으로 정의된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.