• Title/Summary/Keyword: 이산화탄소 양생

Search Result 34, Processing Time 0.021 seconds

Influence of Na/Al Ratio and Curing Temperature of Geopolymers on Efflorescence Reduction (Na/Al 비와 양생온도가 지오폴리머의 백화억제에 미치는 영향)

  • Kim, Byoungkwan;Heo, Ye-Eun;Chon, Chul-Min;Lee, Sujeong
    • Resources Recycling
    • /
    • v.27 no.6
    • /
    • pp.59-67
    • /
    • 2018
  • Efflorescence is a white deposit of powders in the surface of cement concrete which can also occur in geopolymers. Efflorescence occurs when sodium ions in alkali activator react with atmospheric carbon dioxide to form sodium carbonate components. In this study, we investigated whether the secondary efflorescence can be reduced by controlling the Na/Al mole ratio or by changing the curing temperature and heat curing time in fly ash-based geopolymers. The 28 days compressive strength in geopolymers having Na/Al ratio of 1.0 was higher than geopolymers having Na/Al ratio of 0.8. The strength increased with the increasing curing temperature and longer heat curing time. On the other hand, efflorescence was lower when the curing temperature was high and the heat curing time was longer in the geopolymers having Na/Al ratio of 1.0. The geopolymers having Na/Al ratio of 0.8 showed accelerated efflorescence occurrence than the geopolymers having Na/Al ratio of 1.0. In order to reduce the occurrence of the secondary efflorescence of fly ash-based geopolymers, it will be advantageous to maintain the Na/Al ratio at 1.0, increase the curing temperature, and lengthen the heating curing time.

Properties of carbonated green construction materials by changes in processing conditions (공정조건 변화에 따른 탄산화 녹색건자재의 물성)

  • Kim, Yootaek
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.23 no.3
    • /
    • pp.152-160
    • /
    • 2013
  • The purpose of this study is to enhance the mechanical strength of specimens containing fly ash from fluidized bed type boiler, which the recycling rate will be eventually increased. Specimens containing fly ash in a certain portion were made and aged for 3, 14, and 28 days. Specimens were carbonated under the supercritical condition at $40^{\circ}C$. The carbonation process under the supercritical condition was performed to enhance the mechanical property of specimens by filling the voids and cracks existing inside cement specimen with $CaCO_3$ reactants. The additional aging effect after the supercritical carbonation process on mechanical strength of specimens was also investigated by comparing the compressive strength with and without 7 day extra aging. Under the supercritical condition and additional 7 day aging specimens were very effective for enhancement of mechanical strength and compressive strength increased by 44 %.

A Basic Study on the Strength Development Characteristics of Calcium Silicate Cement(CSC) Mixed Mortar according to Carbonation Curing Conditions (칼슘실리케이트 시멘트(CSC) 혼입 모르타르의 탄산화 양생 조건에 따른 강도발현 특성에 관한 기초적 연구)

  • Kim, Young-Jin;Ryu, Dong-Woo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.141-142
    • /
    • 2023
  • In this study, the strength development characteristics of calcium silicate cement mixed mortar according to carbonation hardening conditions were evaluated. As a result of measuring the compressive strength, the strength increased according to the carbonation hardening time, and the strength increase rate was higher for the specimen with a CO2 concentration of 20%.

  • PDF

The Long-term Durability Evaluation of PC Box for Near-surface Transit System manufactured by Microwave Heat curing (마이크로웨이브 발열양생에 의해 제작된 저심도 철도시스템용 PC BOX의 장기내구성 평가)

  • Koh, Tae-Hoon;Yoo, Han-Ju
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.4
    • /
    • pp.766-771
    • /
    • 2016
  • This study examined the long-term durability of PC boxes, which was manufactured by low-carbon eco-friendly concrete using an alternative binder to cement and alternative fine aggregate to sand and microwave heat curing system to reduce the construction cost of a near-surface transit system. Based on the test results, the initial compressive strength of microwave heat cured concrete was higher than that of the steam cured concrete, but those were similar in the long-term age. In addition, there was no significant difference between the two curing conditions in the chemical resistance and the freeze-thawing resistance, and the chloride ion penetration level of the concrete cured by two methods was very low. Therefore, low-carbon eco-friendly concrete and microwave heat curing technology are expected to contribute to the economic construction of a near-surface transit system, and reduce carbon dioxide emissions and environmental impact.

Physical Properties of Photosynthetic Cyanobacteria Applied Porous Concrete by CO2 Sequestration (광합성 남세균을 도포한 투수 콘크리트의 이산화탄소 고정에 의한 물성 변화)

  • Indong Jang;Namkon Lee;Jung-Jun Park;Jong-Won Kwark;Hoon Moon
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.4
    • /
    • pp.416-424
    • /
    • 2023
  • Concrete emits a large amount of carbon dioxide throughout its life cycle, and due to the societal demand for carbon dioxide reduction, research on storing carbon dioxide in concrete in the form of minerals is ongoing. In this study, cyanobacteria, which absorb carbon dioxide through photosynthesis and fix it as calcium carbonate, were applied to a porous concrete substrate, and the changes in the properties of the concrete substrate due to their special environmental curing condition were analyzed. The results showed that the calcium carbonate precipitation by the microorganisms was concentrated in the light-exposed surface area, and most of the precipitation occurred in the cement paste part, not in the aggregate. This microbially induced calcium carbonate precipitation enhanced the mechanical performance of the paste and improved the overall compressive strength as the curing age progressed. In addition, the increase in microbial biofilm and calcium carbonate improved the pore structure, which influenced the reduction in water permeability.

Manufacture of CO2 Reactive Hardening Cement Using Waste Concrete Powder (폐콘크리트 미분말을 활용한 이산화탄소 반응경화 시멘트 제조)

  • Lee, hyang-Sun;Song, Hun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.11a
    • /
    • pp.75-76
    • /
    • 2023
  • In the cement industry, various research initiatives are underway to achieve carbon neutrality. Mineral carbonation is a technology that converts carbon dioxide into minerals for storage, and CO2 reactive hardening cement is a type of cement that incorporates mineral carbonation technology. In this study, we aimed to manufacture CO2 reactive hardening cement for reducing carbon emissions in the cement industry by utilizing waste concrete powder generated in the construction sector.

  • PDF

Mechanical Properties According to Curing Conditions of Mortar Using CO2 Hardening Cement (CO2 반응경화 시멘트 활용 모르타르의 양생조건에 따른 역학적 특성)

  • Ji-Seok Seo;Sun-Gyu Tae;Jun Lee;Bong-Chun Lee
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.4
    • /
    • pp.307-315
    • /
    • 2023
  • In this study, mortar test specimens were produced by varying the mixing ratio of CO2 reaction hardening cement (CSC) and general cement (OPC), and the mechanical and carbonation characteristics were evaluated by controlling the primary curing temperature and secondary curing CO2 pressure. Under all curing conditions, it was observed that the higher the CSC ratio in the binder, the lower the mechanical properties. Specifically, a first curing temperature of 60 ℃ yielded higher mechanical properties compared to the case of 20 ℃, and a greater carbonation penetration depth was also observed. At a first curing temperature of 60 ℃, it was noted that the curing pressure and bending strength during the second CO2 curing were inversely proportional, while the compressive strength showed a proportional relationship. This phenomenon is believed to be due to excessive carbonation, which reduces mechanical properties, and the fact that flexural strength is more sensitive to these properties compared to compressive strength. However, based on the evaluation of the limited curing conditions, it is evident that future test conditions need to be expanded and reviewed more thoroughly.

Properties of Cement Paste Containing High Volume γ-C2S and MgO Subjected to CO2 Curing (γ-C2S 및 MgO를 다량 혼입한 시멘트 페이스트의 CO2 양생유무에 따른 특성변화)

  • Sung, Myung-Jin;Cho, Hyeong-Kyu;Lee, Han-Seung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.15 no.3
    • /
    • pp.281-289
    • /
    • 2015
  • Carbonation of concrete causes reduction of pH and subsequently causes steel corrosion for reinforced concrete structure. However, for plain concrete structure or PC product, it can lead to a decrease in porosity, high density, improvement of concrete, shrinkage-compensation. Recently, based on this theory, research of $CO_2$ curing effect has been performed, but it was mainly focused on its effects on compressive strength using only ordinary portland cement. Researches on $CO_2$ curing effect for concrete containing $CO_2$ reactive materials such as ${\gamma}-C_2S$, MgO haven't been investigated. Therefore, this study has performed experiments under water-binder ratio 40%, and the replacement ratios of ${\gamma}-C_2S$ and MgO were 90%. Micro-chemical analysis, measurement of compressive strength according to admixtures and $CO_2$ curing were investigated. Results from this study revealed that higher strength was measured in case of $CO_2$ curing compared with none $CO_2$ curing for plain specimen indicating difference between 1.08 and 1.26 times, in case of ${\gamma}-C_2S$ 90, MgO 90 specimen, incorporating high volume replaced as much as 90%, it was proven that when applying $CO_2$ curing, higher strength which has difference between 14.56 and 45.7 times, and between 6.5 and 10.37 times was measured for each specimen compared to none $CO_2$ curing. Through micro-chemical analysis, massive amount of $CaCO_3$, $MgCO_3$ and decrease of porosity were appeared.

Experimental Study on Accelerated Carbonation Characteristics of OPC Paste for CSC-Based Low Carbon Precast Concrete Products (CSC 기반 저탄소 콘크리트 2차제품 제조를 위한 OPC 페이스트의 촉진탄산화 특성에 관한 실험적 연구)

  • Yoon, Jun-Tae;Kim, Young-Jin;Sim, Sang-Rak;Ryu, Dong-Woo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.24 no.3
    • /
    • pp.285-295
    • /
    • 2024
  • This study investigated the impact of accelerated carbonation on Ordinary Portland Cement(OPC) paste that had undergone steam curing at 500℃·hr. Two carbonation environments were examined: atmospheric carbonation(1atm, 20% CO2) and pressurized carbonation(5atm, 99% CO2). Chemical analysis using X-ray diffraction(XRD) and Fourier-Transform Infrared spectroscopy(FT-IR) were conducted, along with physical characterization via scanning electron microscopy(SEM) and compressive strength testing. Results indicated that atmospheric carbonation with 20% CO2 concentration significantly densified the internal microstructure of the OPC paste, leading to enhanced compressive strength. Conversely, pressurized carbonation at 5atm with 99% CO2 concentration resulted in rapid densification of the surface structure, which hindered CO2 diffusion into the sample. This limited the extent of carbonation and prevented the improvement of physical properties.

An Experimental Study on the Carbonation Depth of Cement Paste Using Carbonation Reaction Accelerator (탄산화 반응 촉진제를 이용한 시멘트 페이스트의 탄산화 깊이에 관한 실험적 연구)

  • Seok-Man Jeong;Wan-Hee Yang;Dong-Cheol Park
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.4
    • /
    • pp.349-354
    • /
    • 2023
  • This study wa s conducted a s pa rt of ma ximizing the use of ca rbon dioxide by a pplying CCU(Ca rbon Ca pture, Utiliza tion) a mong technologies for reducing CO2 in the cement industry. In a carbon dioxide curing environment, changes in carbonation depth and changes in basic physical properties by age due to the mixing of carbonation reaction accelerators were usually targeted at Portland cement paste. In addition, in order to check the fixed amount of CO2 in the concrete field, a thermal analysis method was applied to evaluate CaCO3 decarbonization at high temperatures. As a result of the evaluation, it was confirmed that the carbonation depth in the cured body significantly increased due to the incorporation of CRA in the carbonation depth diffusion performance. In addition, it was confirmed that the weight reduction rate increased by 23.8 % and 40.77 %, respectively, compared to Plain, in the order of curing conditions for constant temperature and humidity and curing conditions for carbonation chambers, so it was confirmed that the amount of excellent CaCO3 produced by the addition of CRA increased as the concentration of CO2 increased.