• Title/Summary/Keyword: 이산화탄소 수용액

Search Result 82, Processing Time 0.023 seconds

The Spray Characteristics and Spray Behavior Characteristic in Exhaust Gas Flow of Urea Solution Injector (Urea 수용액 분사용 인젝터의 분무 특성과 배기관내 분무 거동 특성)

  • Oh, Jung-Mo;Han, Young-Deok;Kim, Ki-Bum;Lee, Ki-Hyung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.11
    • /
    • pp.999-1004
    • /
    • 2010
  • Recently, many technologies have been developed in order to satisfy stringent emission regulations. However, in the case of diesel engines, the stringent emission regulations with respect to NOx and PM have not yet been satisfied. A dramatic reduction in the NOx and PM emissions could be achieved by using after-treatment systems such as lean NOx trap (LNT) and urea-SCR systems. However, the high temperature in the exhaust pipe affects the spray behavior of the secondary injector, which is used for supplying the Urea-SCR. Because of this high temperature, it is difficult to achieve uniform distribution of the reducing agent in the manifold. In this paper, the characteristics of a urea-SCR injector used for injecting in the exhaust pipe are presented. The purpose of this study was to investigate the spray characteristics of the injector, such as the spray angle, injection quantity, and SMD. In addition, laser diagnostics and high-speed-camera images were used to analyze the injector spray characteristics and to present a distribution of reduction in the transparent manifold.

Methane Recovery and Carbon Dioxide Stripping by MEA Solution the Autocirculation Bubble Lift Column Reactor (내부순환식 기포탑 반응기 상에서 MEA (monoethanolamine) 용액에 의한 이산화탄소 분리 및 메탄회수)

  • Lee, In-Hwa;Kim, Sun-Yil;Park, Ju-Young
    • Applied Chemistry for Engineering
    • /
    • v.18 no.3
    • /
    • pp.239-244
    • /
    • 2007
  • For the simultaneous methane recovery and $CO_2$-stripping, we have been developed dual vent auto circulation bubble lift column reactor, and evaluate optimum conditions for monoethanolamine (MEA) solutions as a $CO_2$ absorbent. At the 5 wt% MEA solution, we investigated the pH change during $CO_2$-stripping and absorption reaction, $CO_2$-stripping rate with reaction time, methane recovery efficiency for various inflow rates of air, $CO_2$-stripping rate for flow liquid over flow height, and $CO_2$-stripping dependency on the temperature of absolvent solutions. The suggested optimum conditions for $CO_2$ recovery with MEA in the dual vent auto circulation bubble lift column reactor were 40 mm over flow liquid height, 1.5 L/min of air inflow rate, and $25^{\circ}C$ of absorbent solution temperature.

Utilization of Supercritical Carbon Dioxide for the Preparation of 2-Hydroxypropyl-β-Cyclodextrin Microparticles and Their Inclusion Complexes with Ibuprofen (초임계 이산화탄소를 이용한 2-Hydroxypropyl-β-Cyclodextrin 미립자와 이부프로펜과의 포접복합체 제조)

  • Ryu, Jong-Hoon
    • Clean Technology
    • /
    • v.19 no.3
    • /
    • pp.212-218
    • /
    • 2013
  • The microparticles of 2-hydroxypropyl-${\beta}$-cyclodextrin (HP-${\beta}$-CD) were prepared using aerosol solvent extraction system (ASES) by employing supercritical carbon dioxide as an antisolvent, The effects of various process parameters such as temperature, pressure, solution concentration and solution flow rate on the formation of HP-${\beta}$-CD microparticles were investigated. The HP-${\beta}$-CD microparticles prepared by the ASES process were observed to consist of agglomerates of nano-sized (50-200 nm) particles. When an aqueous solution of ethanol was used as a solvent for HP-${\beta}$-CD, the HP-${\beta}$-CD particles were found to be spherical in shape and to become larger as the water content increased. It was confirmed that the micronization of HP-${\beta}$-CD using the ASES process could enhance the inclusion efficiency of ibuprofen/HP-${\beta}$-CD complexes significantly.

A Study for Carbon Dioxide Removal Process Using N-Methyl-2-Pyrrolidone Solvent in DME Production Process (DME 생산공정에서 노말 메틸 피로리돈(N-Methyl-2-Pyrrolidone) 용매를 이용한 이산화탄소 제거공정 연구)

  • Jung, Jongtae;Roh, Jaehyun;Cho, Jungho
    • Clean Technology
    • /
    • v.18 no.4
    • /
    • pp.347-354
    • /
    • 2012
  • In this study, simulation works have been performed for the $CO_2$ removal process contained in the DME production process using NMP (N-methyl-2-pyrrolidone) as a solvent. PRO/II with PROVISION release 9.1 at Invensys was used as a chemical process simulator and NRTL activity coefficient model with Henry's law option and Soave-Redlich-Kwong equation of state were used for thermodynamic models. For the determination of the binary interaction parameters in NRTL model, regression works have been performed to match the experimental thermodynamic data. Optimal feed tray location which minimizes the reboiler heat duty was determined.

Theoretical Study on Optimal Conditions for Absorbent Regeneration in CO2 Absorption Process (이산화탄소 흡수 공정에서 흡수액 최적 재생 조건에 대한 이론적 고찰)

  • Park, Sungyoul
    • Korean Chemical Engineering Research
    • /
    • v.50 no.6
    • /
    • pp.1002-1007
    • /
    • 2012
  • The considerable portion of energy demand has been satisfied by the combustion of fossil fuel and the consequent $CO_2$ emission was considered as a main cause of global warming. As a technology option for $CO_2$ emission mitigation, absorption process has been used in $CO_2$ capture from large scale emission sources. To set up optimal operating parameters in $CO_2$ absorption and solvent regeneration units are important for the better performance of the whole $CO_2$ absorption plant. Optimal operating parameters are usually selected through a lot of actual operation data. However theoretical approach are also useful because the arbitrary change of process parameters often limited for the stability of process operation. In this paper, a theoretical approach based on vapor-liquid equilibrium was proposed to estimate optimal operating conditions of $CO_2$ absorption process. Two $CO_2$ absorption processes using 12 wt% aqueous $NH_3$ solution and 20 wt% aqueous MEA solution were investigated in this theoretical estimation of optimal operating conditions. The results showed that $CO_2$ loading of rich absorbent should be kept below 0.4 in case of 12 wt% aqueous $NH_3$ solution for $CO_2$ absorption but there was no limitation of $CO_2$ loading in case of 20 wt% aqueous MEA solution for $CO_2$ absorption. The optimal regeneration temperature was determined by theoretical approach based on $CO_2$ loadings of rich and lean absorbent, which determined to satisfy the amount of absorbed $CO_2$. The amount of heating medium at optimal regeneration temperature is also determined to meet the difference of $CO_2$ loading between rich and lean absorbent. It could be confirmed that the theoretical approach, which accurately estimate the optimal regeneration conditions of lab scale $CO_2$ absorption using 12 wt% aqueous $NH_3$ solution could estimate those of 20 wt% aqueous MEA solution and could be used for the design and operation of $CO_2$ absorption process using chemical absorbent.

CO2 Absorption by Alkali-modified Amino Acid Salts (알칼리금속을 함침시킨 아미노산 염 수용액의 이산화탄소 흡수특성 연구)

  • Lim, Yun-Hui;Jo, Young-Min;Park, Joon-Seok
    • Applied Chemistry for Engineering
    • /
    • v.22 no.5
    • /
    • pp.526-531
    • /
    • 2011
  • The present study attempted to impregnate alkali metals to amino acid in order to improve $CO_2$ absorption capacity. A used amino acid was glycine, of which pH increased up to about 11 with the addition of alkalies. $CO_2$ absorption capacity of amino acid salts was evaluated in a batch and a continuous process. The absorption capacity appeared in turns as; Sodium Glycinate ${\geq}$ Lithium Glycinate > Potassium Glycinate. Amino acid salts showed lower absolute capacity of $CO_2$ absorption than primary amine (Monoethanolamine) at $20^{\circ}C$. In a continuous absorption with 10% $CO_2$ flow, the increasing the reaction temperature, the increasing rate of absorption for amino and was higher that of than amino absorbent.

Cooling and Antisolvent Crystallization of Potassium Bicarbonate in the Presence of Sterically Hindered Alkanolamines (입체 장애 알카놀아민 혼합 수용액에서 중탄산칼륨 결정의 냉각 반용매 결정화)

  • Jo, Chang Sin;Jung, Taesung;Yoon, Hyoung Chul;Kim, Jong-Nam;Rhee, Young Woo
    • Clean Technology
    • /
    • v.20 no.4
    • /
    • pp.383-389
    • /
    • 2014
  • $CO_2$ absorption processes have a good potential for large scale capture of $CO_2$ but a large amount of absorbing solution has to be regenerated, undesirably increasing the consumption of energy such as sensible heat and latent heat of vaporization. In this study, a cooling crystallization process which would separate the $CO_2$-rich potassium bicarbonate crystals from $CO_2$-lean water was developed to reduce the energy penalty. Sterically hindered alkanolamine additives were used to enhance the $CO_2$ removal efficiency and their antisolvent effect on the crystallization was found in a continuous cooling crystallizer. The production yields of crystals were increased in the sequence of 2-amino-2-methyl-1-propanol (AMP) < 2-amino-2-methyl-1,3-propanediol (AMPD) < 2-amino-2-hydroxymethyl-1,3-propanediol (AHPD), which are related to the number of hydroxyl groups in the additive molecules. Using $^{13}carbon$ nuclear magnetic resonance, the additives favored the formation of bicarbonate ions by steric hindrance effect and increased the supersaturation of $KHCO_3$. It is shown that the additives increase the mean size of crystals and crystal growth rate by increasing supersaturation. The additives are promising for enhancing the $CO_2$ removal efficiency and reducing the regeneration energy cost of $CO_2$ absorbing solution by promoting $KHCO_3$ crystallization.

Preliminary Study on Reaction Mechanism for Energy Generation using Hydride and Hydrogen Peroxide (수소화물과 과산화수소를 적용한 에너지 생성 메커니즘 연구)

  • Seo, Seong-Hyeon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.300-303
    • /
    • 2012
  • Global warming has been a serious problem due to excessive emissions of carbon dioxide from the increase of energy consumption. The present study investigates an energy generation mechanism that does not produce carbon dioxide and oxides of nitrogen. A reaction mechanism including sodium borohydride and hydrogen peroxide has been introduced and as a result, thermal energy can be generated from combustion of hydrogen with oxygen. Sodium borohydride dissolved in water reacting with liquid hydrogen peroxide may reveal maximum adiabatic reaction temperature of 1795 K at a mixture ratio of 0.89.

  • PDF

Degradation Characteristics of Aqueous AMP Solution Containing Additives in Separation of $CO_2/H_2S$ ($CO_2/H_2S$의 분리시 첨가제에 따른 AMP 수용액의 열화특성)

  • Choi, Won-Joon;Lee, Jae-Jeong;Cho, Ki-Chul;Oh, Kwang-Joong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.3
    • /
    • pp.280-285
    • /
    • 2005
  • The method of chemical absorption has been presented to separate and recover acid gases like $CO_2\;and\;H_2S$. But, this method has some problems such as loss of valuable amine and operational problems (forming, corrosion and fouling) by degradation. In this study, we investigated the degradation characteristics of aqueous AMP solution containing additives such as HMDA, MDEA and piperazine. The degradation was affected by temperature and process time. AMP solution absorbing $CO_2\;and\;H_2S$ was degraded 105% and 23% more than pure AMP at $120^{\circ}C$ respectively. In addition, all the additives were degraded significantly as the temperature increased. The order of the degraded amount of additives mixed in the AMP solution containing absorbed $CO_2$ was as followings : HMDA > piperazine > MDEA.

Prediction of Absorption Behavior of Carbon Dioxide on Membrane Contactor (분리막 접촉기를 통한 이산화탄소 흡수거동 예측)

  • Cho, In-Gi;Ahn, Hyo-Seong;Hahm, Moon-Ky;Kim, I.H.;Lee, Yong-Taek;Park, You-In;Lee, Kew-Ho
    • Membrane Journal
    • /
    • v.10 no.1
    • /
    • pp.39-46
    • /
    • 2000
  • To predict the absorption behavior of carbon dioxide on membrane contactor, an aqueous potassium carbonate solution as an absorbent. The reversible reactions of carbon dioxide with chemicals were considered, and the physicochemical properties of reaction rate constants, equilibrium constants, solubilities and diffusion coefficients were used as a function of concentration of carbon dioxide and the temperature. A non-wetted mode was also used as an operating condition of the membrane contactor. In these operation conditions, the effect of the following system parameters were studied : the concentration of potassium carbonate, the velocity of the absorbent and the pressure of the mixture gas. The absorption behavior of carbon dioxide caused by a facilitated transport was observed as the increment of the concentration of the absorbent. The absorption rate of carbon dioxide was increased as the absorbent velocity was increased. Furthermore, it was found that the pressure if the mixture gas and the reuse number of absorbent affect severely the absorption rate of carbon dioxide. The absorption behavior was successfully predicted by the computer simulation using the system parameters which are important for design and operation of the membrane contactor.

  • PDF