• Title/Summary/Keyword: 이변량 자료

Search Result 195, Processing Time 0.024 seconds

The effect of adding the summed univariate data to the bivariate data in regression model (회귀모형에서 이변량 자료에 합산된 일변량 자료를 첨가시킬 때의 효과)

  • 박래현;이석훈;김노만
    • The Korean Journal of Applied Statistics
    • /
    • v.12 no.2
    • /
    • pp.573-584
    • /
    • 1999
  • 본 연구는 이변량 회귀모형을 이변량 자료에 적용할 때 이변량 자료(분리형 자료) 이외에 이변량 자료를 합산한 일변량 자료(통합형 자료)를 동시에 사용하는 문제를 고찰하였다. 특징을 파악하기 위하여 설명변수가 하나인 경우를 다루었는데 통합형 자료의 첨가효과를 회귀계수의 추정량의 평균제곱오차의 크기로서 측정하면서 효과와 이변량 모형과의 관계를 조사하였다. 최대우도 추장량의 특성으로부터 대표본의 성질을 추출하고 또한 모의실험을 통하여 소표본에서도 대표본의 성질이 만족하는지 조사하였고 끝으로 실제 자료에 적용하여 보았다.

  • PDF

Assessment of the Bivariate Regional Frequency analysis for The Extreme Rainfalls of South Korea (이변량 지역빈도해석의 한국 극한강우에 대한 적용성 평가)

  • Shin, Ju-Young;Ahn, Hyunjun;Jeong, Changsam;Heo, Jun-Haeng
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.12-12
    • /
    • 2018
  • 수공구조물 설계의 기준을 정하기 위해서 수문자료의 빈도해석이 널리 사용되고 있다. 수문자표의 빈도해석 기법으로는 자료의 차원과 기법에 따라서 총 네 개로 구분할 수 있다. 그 네 개의 빈도해석은 다음과 같다 1) 단변량 수문자료와 지점별로 확률분포형 모형을 구축하는 단변량 지점빈도해석, 2) 다변량 수문자료와 지점별로 확률분포형을 구축하는 다변량 지점빈도해석, 3) 단변량 수문자료와 동일지점내의 확률분포모형을 구축하는 단변량 지역빈도해석, 4) 다변량 수문자료와 동일지점내의 확률분포모형을 구축하는 다변량 지역빈도해석. 현재는 다변량 지역빈도해석에 대한 연구사 수문분야에서 활발히 연구되고 있다. 현재 다변량 지역빈도해석에 대한 한국의 극한 강우 자료에 대한 연구가 진행되지 않았기 때문에, 본 연구에서는 이변량 극한강우자료에 대한 다변량 지역빈도해석의 적용성을 평가하였다.

  • PDF

Estimation of the joint conditional distribution for repeatedly measured bivariate cholesterol data using Gaussian copula (가우시안 코플라를 이용한 반복측정 이변량 자료의 조건부 결합 분포 추정)

  • Kwak, Minjung
    • The Korean Journal of Applied Statistics
    • /
    • v.30 no.2
    • /
    • pp.203-213
    • /
    • 2017
  • We study estimation and inference of joint conditional distributions of bivariate longitudinal outcomes using regression models and copulas. We consider a class of time-varying transformation models and combine the two marginal models using Gaussian copulas to estimate the joint models. Our models and estimation method can be applied in many situations where the conditional mean-based models are inadequate. Gaussian copulas combined with time-varying transformation models may allow convenient and easy-to-interpret modeling for the joint conditional distributions for bivariate longitudinal data. We apply our method to an epidemiological study of repeatedly measured bivariate cholesterol data.

A Development of Bivariate Drought Regional Frequency Analysis Model using Bayesian Copula (Bayesian Copula 기법을 활용한 이변량 가뭄 지역빈도해석 모델 개발)

  • Kim, Jin-Guk;So, Byung-Jin;Kwon, Hyun-Han
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.54-54
    • /
    • 2019
  • 최근 이변량 가뭄 빈도해석시 Copula 함수 기반의 빈도해석모델을 활용한 분석이 이루어지고 있다. 그러나 기존 연구에서는 이변량 가뭄 빈도해석시 지점빈도해석에 국한되어 분석이 이루어지며, 지역을 대표하는 수문자료의 특성이 반영된 빈도분석에 대한 연구는 미진한 실정이다. 이에 본 연구에서는 Bayesian 기법과 이변량 Copula 가뭄 빈도해석 기법을 연계한 Bayesian 이변량 Copula 지역빈도해석 모델을 개발하였다. 개발된 모델에 모의자료를 적용하여 가정한 가뭄특성 및 매개변수를 추정하였으며, 유사하게 도출된 결과를 통해 모델의 적합성을 평가하였다. 최종적으로 최근 발생한 가뭄사례를 중심으로 이변량 가뭄 지역빈도해석을 수행한 결과, 기존 지점빈도해석보다 가뭄의 특성을 효과적으로 반영된 빈도해석이 이루어지는 것을 확인하였으며, 기존 Copula 모델에 Bayesian 기법을 도입하여 매개변수에서 발생하는 불확실성을 정량화 하였다. 본 연구에서 제안된 모델의 검증과정과 도출된 결과를 통해 가뭄자료의 지역적 분포특성 및 자료간의 상관성을 효과적으로 재현하는데 유리할 뿐만 아니라, 매개변수의 불확실성을 평가할 수 있는 장점을 제공할 것으로 판단된다.

  • PDF

Testing for $P(X_{1}\;<\;X_{2})$ in Bivariate Exponential Model with Censored Data (중단자료를 갖는 이변량 지수 모형에서 $P(X_{1}\;<\;X_{2})$에 대한 검정)

  • Park, Jin-Pyo;Cho, Jang-Sik
    • Journal of the Korean Data and Information Science Society
    • /
    • v.8 no.2
    • /
    • pp.143-152
    • /
    • 1997
  • In this paper, we obtain maximum likelihood estimators for $P(X_{1}\;<\;X_{2})$ in the Marshall and Olkin's bivariate exponential model with bivariate censored data. The asymptotic normality of the estimator is derived. Also we propose approximate testing for $P(X_{1}\;<\;X_{2})$ based on the M.L.E. We compare the test powers under vsrious conditions through Monte Carlo simulation.

  • PDF

Bivariate skewness, kurtosis and surface plot (이변량 왜도, 첨도 그리고 표면그림)

  • Hong, Chong Sun;Sung, Jae Hyun
    • Journal of the Korean Data and Information Science Society
    • /
    • v.28 no.5
    • /
    • pp.959-970
    • /
    • 2017
  • In this study, we propose bivariate skewness and kurtosis statistics and suggest a surface plot that can visually implement bivariate data containing the correlation coefficient. The skewness statistic is expressed in the form of a paired real values because this represents the skewed directions and degrees of the bivariate random sample. The kurtosis has a positive value which can determine how thick the tail part of the data is compared to the bivariate normal distribution. Moreover, the surface plot implements bivariate data based on the quantile vectors. Skewness and kurtosis are obtained and surface plots are explored for various types of bivariate data. With these results, it has been found that the values of the skewness and kurtosis reflect the characteristics of the bivariate data implemented by the surface plots. Therefore, the skewness, kurtosis and surface plot proposed in this paper could be used as one of valuable descriptive statistical methods for analyzing bivariate distributions.

이변량 반복측정자료에서 가중일치상관계수의 추정

  • 강보경;김규성
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2000.11a
    • /
    • pp.261-266
    • /
    • 2000
  • 이변량 반복측정자료에서 Chinchilli 등(1996)이 제안한 가중일치상관계수는 두 변수의 일치성을 나타내는 측도이다. 기존에 제안된 가중일치상관계수 추정법은 변동효과 및 측정오차의 분산성분을 각각 최소제곱법으로 비편향 추정하여 구하는 것이다. 본 연구에서는 반복측정자료의 주변 우도함수를 설정한 후, 우도함수에 기초한 분산성분을 구하여 가중일치상관계수를 추정하는 방법을 제안한다. 이때, 각 분산성분은 유사/의사 우도함수 및 사후 분포에서 반복시행을 통하여 구해진다.

  • PDF

Estimation of the joint conditional distribution for repeatedly measured bivariate cholesterol data using nonparametric copula (비모수적 코플라를 이용한 반복측정 이변량 자료의 조건부 결합 분포 추정)

  • Kwak, Minjung
    • Journal of the Korean Data and Information Science Society
    • /
    • v.27 no.3
    • /
    • pp.689-700
    • /
    • 2016
  • We study estimation and inference of the joint conditional distributions of bivariate longitudinal outcomes using regression models and copulas. For the estimation of marginal models we consider a class of time-varying transformation models and combine the two marginal models using nonparametric empirical copulas. Regression parameters in the transformation model can be obtained as the solution of estimating equations and our models and estimation method can be applied in many situations where the conditional mean-based models are not good enough. Nonparametric copulas combined with time-varying transformation models may allow quite flexible modeling for the joint conditional distributions for bivariate longitudinal data. We apply our method to an epidemiological study of repeatedly measured bivariate cholesterol data.

Comparative Analysis of Rainfall Quantile From Bivariate Frequency Analysis Using Copula Model and Univariate Frequency Analysis (Copula 모형을 통한 이변량 빈도해석과 일변량 빈도해석을 통한 확률강우량의 비교.분석)

  • Joo, Kyung-Won;Shin, Ju-Young;Nam, Woo-Sung;Heo, Jun-Haeng
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.104-104
    • /
    • 2012
  • 최근 기후변화에 의하여 기상현상이 급변하고 있는 추세이며 강우사상의 경향 또한 그러한 변화를 따라가고 있다. 이러한 시점에서 극적인 강우사상에 대하여 대비해야 할 필요성이 대두되고 있으며 빈도해석을 통하여 확률강우량을 제시하는 방법이 연구되고 많은 발전을 거듭하고 있다. 이러한 방법은 모든 설계에 대하여 보편적으로 적용되고 있지만 일변량 빈도해석을 통하여 얻게 되는 확률량(Quantile)은 한 가지 자료계열에 대하여서만 고려할 수 있다. 이러한 단점을 극복하기 위하여서는 다변량 빈도해석을 수행하는 방법이 있으며 이 또한 국내외적으로 활발히 연구되고 있는 분야이다. 본 연구에서는 이변량 빈도해석을 수행하기 위해 3가지의 copula 모형을 선택하였으며 강우량과 강우지속시간을 자료계열로 사용하여 이변량 빈도해석을 수행하였다. 이를 통하여 얻은 확률강우량을 기존의 일변량 빈도해석의 결과와 정량적으로 비교하여 그 결과를 비교 분석하였으며 향후 새로운 빈도해석 방법의 가능성 및 적절성을 판단하고자 하였다.

  • PDF

Evaluation of Flood Events Considering Correlation between Flood Event Attributes (홍수사상 요소의 상관성을 고려한 홍수사상의 평가)

  • Lee, Jeong Ho;Yoo, Ji Young;Kim, Tae-Woong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.3B
    • /
    • pp.257-267
    • /
    • 2010
  • A flood event can be characterized by three attributes such as peak discharge, total flood volume, and flood duration, which are correlated each other. However, the amount of peak discharge is only used to evaluate the flood events for the hydrological plan and design. The univariate analysis has a limitation in describing the complex probability behavior of flood events. Thus, the univariate analysis cannot derive satisfying results in flood frequency analysis. This study proposed bivariate flood frequency analysis methods for evaluating flood events considering correlations among attributes of flood events. Parametric distributions such as Gumbel mixed model and bivariate gamma distribution, and a non-parametric model using a bivariate kernel function were introduced in this study. A time series of annual flood events were extracted from observations of inflow to the Soyang River Dam and the Daechung Dam, respectively. The joint probability distributions and return periods were derived from the relationship between the amount of peak discharge and the total volume of flood runoff. Applicabilities of bivariate flood frequency analysis were examined by comparing the return period acquired from the proposed bivariate analyses and the conventional univariate analysis.