• 제목/요약/키워드: 이미지 Stitching

검색결과 43건 처리시간 0.027초

관성 센서 데이터를 활용한 3 DoF 이미지 스티칭 향상 (Enhancement on 3 DoF Image Stitching Using Inertia Sensor Data)

  • 김민우;김상균
    • 방송공학회논문지
    • /
    • 제22권1호
    • /
    • pp.51-61
    • /
    • 2017
  • 본 논문은 수평을 유지하여 촬영해야 한다는 기존 이미지 스티칭을 이용한 영상 정합 과정의 단점을 극복하기 위하여, 스마트폰의 가속도 센서와 자기장 센서 데이터를 사용하여 3가지 자유도(3 DoF)에 강인한 이미지 스티칭 방법을 제안한다. 이미지를 붙이는 작업인 이미지 스티칭은 크게 이미지 특징점 추출, 추출된 특징점에서 매칭에 필요한 참인 점(inlier)을 선별, 참인 점을 호모그래피(homography) 행렬로 변환, 호모그래피 행렬을 사용하여 이미지를 왜곡(warping), 왜곡된 이미지와 다른 이미지를 합하는 과정으로 이루어져 있다. 본 논문에서는 일반적으로 사용하는 SIFT, SURF 등의 알고리즘뿐만 아니라 MPEG에서 표준화한 MPEG-7 CDVS(Compact Descriptor for Visual Search) 표준의 특징점 추출 알고리즘을 사용하여 이미지의 특징점을 추출한다. 또한 각 알고리즘의 특징점 추출시간, 추출된 특징점 개수, 선별된 참인 점의 개수를 비교하고, 스티칭 정확도를 판단하여 본 연구에서 활용한 데이터에 어느 알고리즘이 효율적인지 살펴본다.

Synthetic fisheye 이미지를 이용한 360° 파노라마 이미지 스티칭 (Panorama Image Stitching Using Sythetic Fisheye Image)

  • 권혁준;조동현
    • 방송공학회논문지
    • /
    • 제27권1호
    • /
    • pp.20-30
    • /
    • 2022
  • 최근 VR (Virtual Reality) 기술이 주목받기 시작하면서 생동감 넘치는 VR 컨텐츠를 볼 수 있는 360° 파노라마 영상이 많은 관심을 받고 있다. 이미지 스티칭 기술은 360° 파노라마 영상을 제작하는데 주요한 기술로서 많은 연구가 활발하게 이루어지고 있다. 일반적인 스티칭 알고리즘은 특징점 기반 이미지 스티칭을 기반으로 한다. 하지만 기존의 특징점 기반 이미지 스티칭 방법들은 특징점에 크게 영향을 받는다는 문제가 존재한다. 이러한 문제를 해결하기 위해서 최근에는 딥러닝 기반의 이미지 스티칭 기술들이 연구되고 있지만 이미지 간의 겹치는 영역이 거의 없거나 큰 시차가 존재할 때 여전히 많은 문제점이 존재한다. 또한 실제 환경에서는 라벨링 된 정답 파노라마 영상을 얻을 수 없으므로 완전한 지도학습에 한계가 존재한다. 따라서 자율주행분야에 많이 이용되는 칼라(Carla) 시뮬레이터를 통해 카메라 센터가 다른 3개의 fisheye 이미지와 그에 대응되는 정답 영상을 제작하였다. 우리는 제작한 fisheye 영상으로360° 파노라마 영상을 만드는 이미지 스티칭 모델을 제안한다. 최종 실험 결과로는 실제 환경과 비슷하게 구성한 가상의 데이터 세트로 다양한 환경과 큰 시차에도 강인한 스티칭 결과를 검증한다.

SURF와 멀티밴드 블렌딩에 기반한 파노라마 스티칭 (Stitcing for Panorama based on SURF and Multi-band Blending)

  • 라연;신성식;박현주;권오봉
    • 한국멀티미디어학회논문지
    • /
    • 제14권2호
    • /
    • pp.201-209
    • /
    • 2011
  • 이 논문은 이미지 매칭 알고리즘의 일종인 수정된 SURF(Speeded Up Robust Feature)와 이미지 블렌딩 알고리즘의 일종인 멀티밴드 블렌딩으로 구성된 파노라마 이미지 스티칭 시스템을 제안한다. 이 논문은 처음에 수정된 SURF를 기술하고 SIFT(Scale Invariant Feature Transform)와 비교하여 SURF를 이 시스템에서 채택한 이유에 대하여 논한다. 그리고 멀티밴드 블렌딩에 대하여 기술하고, 이어서 제안된 파노라마 이미지 스티칭 시스템의 구조에 대하여 설명하고 마지막으로 이미지 질과 처리시간에 대한 평가를 한다. 평가결과는 제안된 시스템이 개별 이미지들을 이음매 없이 연결하였으며, 많은 개개의 이미지 데이터에 대해서도 완전한 파노라마 이미지를 생성하였으며 처리 시간도 SIFT보다 빨랐다.

이미지 Stitching의 정확한 변환관계 계산을 위한 대응점 관계정보 기반의 개선된 RANSAC 알고리즘 (An Improved RANSAC Algorithm Based on Correspondence Point Information for Calculating Correct Conversion of Image Stitching)

  • 이현철;김강석
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제7권1호
    • /
    • pp.9-18
    • /
    • 2018
  • 최근 가상현실 기반의 콘텐츠들이 늘어나면서 이미지 Stitching 기술의 사용이 증가하고 있다. 이미지 Stitching이란 고해상도 이미지 및 넓은 시야(Wide Field of View)의 이미지를 생성하기 위해 다중의 영상을 정합하는 방법이다. 이런 이미지 Stitching은 하나의 카메라로부터 생성되는 영상의 한계를 넘어 다양한 분야에서 활용되고 있다. 이미지 Stitching은 다중의 영상을 정합하기 위해 특징 점 및 대응점을 검출하고 RANSAC 알고리즘을 이용하여 영상간의 변환관계(Homography)를 계산한다. 일반적으로 변환관계 계산을 위해 대응점들이 필요하다. 그러나 대응점들에는 변환관계에 대한 잘못된 가정이나 오류로 인해 발생할 수 있는 다양한 유형의 노이즈(Noise)가 포함되어 있다. 이러한 노이즈는 변환관계를 정확히 예측하는 방해 요인이 된다. 이처럼 일반적으로 사용되는 대응점 매칭(Matching) 방법들은 잘못된 대응점들을 매칭할 수 있는 경우가 발생하기 때문에 모델 파라미터의 예측을 방해하는 대응점(Outlier)로부터 정확한 변환관계를 구축하기 위해 RANSAC 알고리즘을 사용한다. 본 논문에서는 RANSAC 알고리즘에 사용되는 대응점 관계 정보를 이용하여 좀 더 정확한 대응점(Inlier)을 추출하고 정확한 변환관계를 계산하는 알고리즘을 제안한다. 대응점 관계 정보는 이미지 매칭에 사용되는 대응점 간의 거리 비율을 사용하며, 본 논문은 기존 RANSAC 알고리즘과 같은 성능을 유지하면서 처리 시간을 단축시키는데 있다.

빠른 특징점 기술자 추출 및 정합을 이용한 효율적인 이미지 스티칭 기법 (Efficient Image Stitching Using Fast Feature Descriptor Extraction and Matching)

  • 이상범
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제2권1호
    • /
    • pp.65-70
    • /
    • 2013
  • 최근 디지털 카메라 기술의 발전으로 이미지를 쉽게 생성할 수 있어 이를 활용한 컴퓨터 비전분야의 연구가 활발하게 진행되고 있다. 특히 디지털 이미지에서 특징점을 추출하고 이를 활용하는 연구가 활발하게 진행되고 있다. 이미지 스티칭은 여러 이미지에서 특징점을 추출하고 이를 정합하여 하나의 고해상도 이미지를 생성하는 것으로 군사용, 의료용뿐만 아니라 실생활의 다양한 분야에서 활용되고 있다. 본 논문에서는 특징점 기술자의 차원을 효과적으로 감소시켜 정확하면서도 빠르게 정합점을 찾을 수 있는 SURF 기반의 빠른 특징점 기술자 추출 및 정합을 이용한 효율적인 이미지 스티칭 기법을 제안한다. 추출된 특징점에서 불필요한 특징점을 분류하여 특징점 기술자를 생성한다. 이때 특징점 기술자의 연산량을 줄이면서도 효율적인 정합을 위해 기술자의 차원을 줄이고 방향 윈도우를 확장하였다. 실험 결과 특징점 정합 및 전체 이미지 스티칭 속도가 기존의 알고리즘보다 빠르면서도 자연스러운 스티칭된 이미지를 생성할 수 있었다.

의미 있는 특징점을 이용한 향상된 SURF 알고리즘 기반의 고속 이미지 스티칭 기법 (Fast Image Stitching Based on Improved SURF Algorithm Using Meaningful Features)

  • 안효창;이상범
    • 정보처리학회논문지B
    • /
    • 제19B권2호
    • /
    • pp.93-98
    • /
    • 2012
  • 최근 고성능 디지털 카메라의 발전으로 영상을 쉽게 획득하고, 많은 곳에서 활용하고 있다. 그 중에서 영상을 정합하여 사용하는 이미지 스티칭 방법에 대한 많은 연구가 진행되고 있다. 이미지 스티칭은 위성이나 정찰기 등의 군사용 목적 및 의료 영상, 지도 등의 컴퓨터 비전 분야 등에서 활용할 수 있다. 본 논문에서는 영상에서 특징점을 추출하고 이를 정합하는 과정에서 의미 있는 특징점을 분류하고 이를 사용하는 향상된 SURF 알고리즘 기반의 고속 이미지 스티칭 방법을 제안한다. 여러 장의 영상에서 정합되는 부분을 찾기 위해 각각의 영상에서 특징점을 추출한다. 각각의 영상에서 추출된 특징점들 중 잡음 등과 같은 오류를 제거하여 의미 있는 특징점을 분류하고 이를 정합하여 연산 처리량을 줄임으로써 이미지 스티칭의 속도를 향상시켰다. 실험 결과 특징점 정합 속도 및 이미지 스티칭 속도가 기존의 알고리즘 보다 빠르면서도 자연스러운 영상을 생성할 수 있었다.

Image Stitching 기술을 이용한 Panorama 영상 생성 (Image Stitching for generating panorama image)

  • 방정원
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2016년도 제54차 하계학술대회논문집 24권2호
    • /
    • pp.287-288
    • /
    • 2016
  • 본 논문에서는 한 위치에서 여러방향으로 찍은 사진들을, Image Stitching 기술을 통해 Panorama 영상을 만드는 과정에 대해 연구한다. VR이 주목 받게 됨에 따라 스마트폰이나 360도 카메라를 사용하여 이미지 스티칭 기법을 사용하여 연속적인 사진을 보여주게 되는되 이를 구현 하기 위한 배경 연구들을 분석하고 구현해 봄으로 속도 향상을 아이디어들에 대하여 연구한다.

  • PDF

터널 스캐닝 다중 촬영 영상의 특징점 기반 접합 알고리즘 성능평가 (Performance of Feature-based Stitching Algorithms for Multiple Images Captured by Tunnel Scanning System)

  • 이태희;박진태;이승훈;박신전
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제26권5호
    • /
    • pp.30-42
    • /
    • 2022
  • 최근, 국내의 도심지와 수도권을 잇는 급행철도 사업, 간선도로 및 고속도로의 지중화 사업 등과 같이 교통 인프라 건설이 활발하게 추진되고 있으며 국토의 효율적인 활용을 위하여 지하 터널 및 산 터널의 시공이 활발해지고 있다. 터널 시공이 늘어남에 따라 콘크리트 구조물의 노후화로 인한 안전진단, 유지보수 및 관리의 필요성도 증대되고 있다. 본 논문에서는 인력에 의한 외관조사의 단점을 해결하고 터널 안전점검의 자동화를 위하여 터널 스캐닝영상을 통한 안전점검을 제시한다. 터널 스캐닝영상을 통한 안전점검은 기존 인력에 의한 외관조사에 비해 조사기간과 인력을 크게 줄일 수 있으며 조사자의 안전사고와 교통체증에 따른 사회적 비용을 절감할 수 있다는 장점이 있다. 터널 스캐닝영상 기반 안전점검을 위해서는 터널 스캐닝영상의 접합을 통하여 평면전개 이미지를 생성하는 것이 핵심이다. 본 연구에서는 터널 스캐닝영상 기반 안전점검의 필수기술인 터널 스캐닝 다중 촬영 영상 접합에 적합한 알고리즘에 대한 성능평가를 진행하였다. 터널이미지 접합에 유리한 알고리즘을 찾기 위하여 OpenCV에서 제공하는 특징점 검출 및 매칭 알고리즘 중 실수기술자와 높은 정확도를 갖는 SIFT, 이진기술자를 갖고 연산속도가 빠른 ORB, BRISK 총 3가지 알고리즘을 비교 분석하고자 한다. 터널이미지는 크게 콘크리트부, 조명부와 타일부로 나누어 터널이미지의 특성을 반영하였다. 터널이미지 접합에 유리한 알고리즘은 특징점 검출 개수, 연산속도, 특징점 매칭의 정확성, 영상접합 결과를 종합하여 판별하였다. 접합성능은 SIFT알고리즘이 가장 좋았으며 ORB, BRISK도 짧은 연산시간과 준수한 성능을 보였다. 연산시간보다 정확도가 중요시되는 정밀한 평면전개 이미지 생성에 SIFT가 활용될 수 있고 ORB와 BRISK도 준수한 접합결과를 보여줘 대용량 영상에서 빠른 영상처리 속도가 요구되는 작업이 필요할 경우 사용될 수 있는 가능성을 확인했다.

카메라 어레이를 위한 GPU 기반 이미지 병합 (GPU-Based Image Stitching for Camera Array)

  • 배도현;이영준;신희재;뭉크바야르;김민호;김진석
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2012년도 춘계학술발표대회
    • /
    • pp.352-354
    • /
    • 2012
  • 본 논문에서는 웹캠 카메라 어레이(camera array)로 얻은 여러 장의 이미지를 빠른 속도로 봉합(stitching)하여 고해상도 이미지를 얻기 위해 그래픽스 하드웨어를 이용하는 병렬 알고리즘을 제시한다. 고정된 레이아웃의 카메라 어레이를 이용하여 평면 혹은 원경을 촬영하는 경우, 기존에 널리 쓰이던 평면 사영 이미지 봉합(planar projective image stitching)과 선형 혼합(linear blending)을 통해 만족스런 결과를 얻을 수 있다. 본 논문에서는 이러한 연산을 그래픽스 하드웨어에서 병렬처리 함으로써 추후 실시간 고해상도 동영상 스트리밍 이미지 병합에 활용할 수 있을 정도로 빠른 속도로 처리하는 방법을 제시한다.

A Research on Cylindrical Pill Bottle Recognition with YOLOv8 and ORB

  • Dae-Hyun Kim;Hyo Hyun Choi
    • 한국컴퓨터정보학회논문지
    • /
    • 제29권2호
    • /
    • pp.13-20
    • /
    • 2024
  • 본 논문은 영상에서 특정 원통형 약통을 식별할 수 있는 모델 이미지 생성 방식을 제시하고 데이터 수집에 대한 기술을 연구한다. 기존 연구들은 객체 인식과 특정 객체 식별이 분리되어 있어 이미지 스티칭(image stitching) 자동화에 적용하기 어려웠으며, 좌표 기반 이미지 추출 방식이 이미지 스티칭 과정에서 객체 영역 외의 정보도 모델 이미지에 포함시키는 문제를 갖고 있었다. 이를 해결하기 위해 본 논문은 최근에 출시된 YOLOv8(You Only Look Once)의 세그멘테이션(segmentation)기법을 수직축 회전하는 약통 영상에 적용하고 특징점 매칭 알고리즘인 ORB(Oriented FAST and Rotated BRIEF)를 활용하여 모델 이미지 생성을 자동화하였다. 연구 결과, 세그멘테이션 기법을 적용할 경우 특정 약통 식별시 인식률이 향상되었으며 특징점 매칭 알고리즘으로 생성된 모델 이미지는 특정 악통을 정확하게 식별해 낼 수 있었다.