There have been active research activities to use neural networks to analyze OCT images and make medical decisions. One requirement for these approaches to be promising solutions is that the trained network must be generalized to new devices without a substantial loss of performance. In this paper, we use a deep convolutional neural network to distinguish AMD from normal patients. The network was trained using a data set generated from an OCT device. We observed a significant performance degradation when it was applied to a new data set obtained from a different OCT device. To overcome this performance degradation, we propose an image normalization method which performs segmentation of OCT images to identify the retina area and aligns images so that the retina region lies horizontally in the image. We experimentally evaluated the performance of the proposed method. The experiment confirmed a significant performance improvement of our approach.
Journal of the Korean Applied Science and Technology
/
v.38
no.5
/
pp.1314-1324
/
2021
This study attempted to understand the nurse image and major commitment of nursing students, investigate their relationship, and prepare necessary measures to improve the major commitment of nursing students. The data were collected from 185 nursing students enrolled in seven nursing colleges and were analyzed statistically with the SPSS/WIN 24.0 program. The research results are as follows. It was confirmed that the more positive the nurse image perceived by the subject, the higher the major commitment. In addition, influencing factors the major commitment of nursing students identified in the order of major satisfaction, perception of nursing, nurse image, and aptitude and interest among nursing selection motives, and total explanatory power was 42%. Based on the above results, it is necessary to develop and apply a program including a positive nurse image for nursing students.
The Journal of the Institute of Internet, Broadcasting and Communication
/
v.22
no.2
/
pp.103-108
/
2022
In this paper, we propose a new image analysis method based on regression manifold 3-D PCA. The proposed method is a new image analysis method consisting of a regression analysis algorithm with a structure designed based on an autoencoder capable of nonlinear expansion of manifold 3-D PCA and PCA for efficient dimension reduction when entering large-capacity image data. With the configuration of an autoencoder, a regression manifold 3-DPCA, which derives the best hyperplane through three-dimensional rotation of image pixel values, and a Bayesian rule structure similar to a deep learning structure, are applied. Experiments are performed to verify performance. The image is improved by utilizing the fine dust image, and accuracy performance evaluation is performed through the classification model. As a result, it can be confirmed that it is effective for deep learning performance.
Purpose: The purpose of this study is to enable users to conveniently report risks by automatically classifying risk categories in real time using AI for images reported in the life safety prevention service app. Method: Through a system consisting of a life safety prevention service platform, life safety prevention service app, AI model serving server and sftp server interconnected through the Internet, the reported life safety images are automatically classified in real time, and the AI model used at this time An AI learning algorithm for generation was also developed. Result: Images can be automatically classified by AI processing in real time, making it easier for reporters to report matters related to life safety.Conclusion: The AI image automatic classification system presented in this paper automatically classifies reported images in real time with a classification accuracy of over 90%, enabling reporters to easily report images related to life safety. It is necessary to develop faster and more accurate AI models and improve system processing capacity.
Increasing amount of digital images requires more accurate and faster way of image retrieval. So far, image retrieval method includes content-based retrieval and keyword based retrieval, the former utilizing visual features such as color and brightness and the latter utilizing keywords which describe the image. However, the effectiveness of these methods as to providing the exact images the user wanted has been under question. Hence, many researchers have been working on relevance feedback, a process in which responses from the user are given as a feedback during the retrieval session in order to define user’s need and provide improved result. Yet, the methods which have employed relevance feedback also have drawbacks since several feedbacks are necessary to have appropriate result and the feedback information can not be reused. In this paper, a novel retrieval model has been proposed which annotates an image with a keyword and modifies the confidence level of the keyword in response to the user’s feedback. In the proposed model, not only the images which have received positive feedback but also the other images with the visual features similar to the features used to distinguish the positive image are subjected to confidence modification. This enables modifying large amount of images with only a few feedbacks ultimately leading to faster and more accurate retrieval result. An experiment has been performed to verify the effectiveness of the proposed model and the result has demonstrated rapid increase in recall and precision while receiving the same number of feedbacks.
Kim, Kuekyeng;Hur, Yuna;Kim, Gyeongmin;Yu, Wonhee;Lim, Heuiseok
Journal of the Korea Convergence Society
/
v.8
no.12
/
pp.85-92
/
2017
As accessibility toward traditional cultural contents drops compared to its increase in production, the need for higher accessibility for continued management and research to exist. For this, this paper introduces an image classifier model for traditional images based on artificial neural networks, which converts the input image's features into a vector space and by utilizing a RNN based model it recognizes and compares the details of the input which enables the classification of traditional images. This enables the classifiers to classify similarly looking traditional images more precisely by focusing on the details. For the training of this model, a wide range of images were arranged and collected based on the format of the Korean information culture field, which contributes to other researches related to the fields of using traditional cultural images. Also, this research contributes to the further activation of demand, supply, and researches related to traditional culture.
Proceedings of the Korea Water Resources Association Conference
/
2009.05a
/
pp.1812-1816
/
2009
이미지 해석에 의한 유속장 측정방법은 유체역학분야에서 지난 30 여년 동안 많이 활용되어온 속도측정 기법으로 오늘날에는 이를 수공학 분야에서 이를 유량측정 등 수리현상 해석에 활용하려는 시도가 다각적으로 이루어지고 있다. 이에 본 연구에서는 이미지 해석에 의한 유속장 측정방법을 용담댐 시험유역에 적용하여 그의 자연하천에서의 적용성을 검토하고자 한다. 이미지 해석에 의한 유속장 측정방법은 PIV(Particle Image Velocimetry)로 통칭되고 있으며, PIV는 seeding, illumination, recording, 및 image processing의 네 가지 요소로 구성된다. seeding을 위해서 유체를 따라 흐를수 있는 작은 입자를 유체에 첨가한다. 유체를 따라 흐르는 입자들의 선명한 이미지를 얻기 위해서illumination이 필요하다. PIV를 이용하여 흐름을 해석하기 위한 illumination은 일반적으로 이중펄스 레이저가 이용된다. 이렇게 유속장 해석을 하려는 유체에 대하여 seeding 및 illumination이 준비되면 단일노출- 다중 프레임법, 혹은 다중노출-단일 프레임법으로 흐름을 recording을 한다. image processing은 이미지를 다운로드하고, 디지타이징 및 화질향상을 하는 전처리(pre-processing), 상관계수의 산정에 의한 유속 벡터의 결정 및 에러 벡터를 제거하고 유속장을 그래프화하는 후처리(post-processing) 과정으로 구성된다. LSPIV(Large Scale PIV)는 PIV의 기본원리를 근거로 하여 기존의 PIV에 비하여 실험실 내에서의 수리모형실험이나 일반 하천에서의 유속측정과 같은 큰 규모$(4m^2\sim45,000m^2$)의 흐름해석을 할 수 있도록 Fujita et al.(1994)와 Aya et al.(1995)이 확장시킨 것이다. PIV와 비교시 LSPIV의 다른 점은 넓은 흐름 표면적을 포함하기 위하여 촬영시에 카메라의 광축과 흐름 사이의 각도가 PIV에서 이용하는 수직이 아닌 경사각을 이용하였고 이에 따라 발생하는 이미지의 왜곡을 제거하기 위하여 이미지 변환기법을 적용하여 왜곡이 없는 정사촬영 이미지로 변환시킨다. 이후부터는 PIV의 이미지 처리 방법이 적용되어 표면유속을 산정한다. 다만 이미지 변환을 PIV 이미지 처리 전에 하느냐 후에 하느냐에 따라 유속장 해석결과에 차이가 있다. PIV의 네가지 단계를 포함하여 LSPIV의 각 단계를 구분하면, seeding, illumination, recording, image transformation,image processing 및 post-processing의 여섯 단계로 나뉘어진다 (Li, 2002). LSPIV를 적용시 물표면 입자의 Tracing을 위하여 자연하천에서 사용하기에 적합한 환경친화적인 seeding 재료인 Wood Mulch를 사용하여 유속을 측정하였다. 적용지점은 용담댐 상류의 동향수위관측소 지점으로 이 지점은 한국수자원공사의 수자원시험유역이 위치하고 있다. 이미지의 촬영은 가정용 비디오 캠코더 (Sony DCR-PC 350)을 이용하여 두 줄기의 흐름에 대하여 각각 약 5분 동안의 영상을 촬영한후 이중에서 seeding의 분포가 잘 이루어진 약 1분간을 추출한후 이를 이용하여 PIV 분석에 이용하였다. 대체적으로 유속장의 계산이 무난하게 이루어지었으나 비교적 수질 상태가 양호하고, 수심이 낮고, 하상재료가 자갈로 이루어져 있어 비슷한 색상의 seeding 재료를 추적하기 어려운 구간이 발생한 부분에서는 유속의 계산이 정확히 이루어지지 않았다.
Journal of the Korea Academia-Industrial cooperation Society
/
v.18
no.12
/
pp.548-556
/
2017
The purpose of this study is to examine the effects of cognitive and affective images of a farm party venue on consumer satisfaction and revisit intention with a research model and hypothesis test. First, the cognitive and affective images of a farm party venue had a significant effect on consumer satisfaction in the test and the cognitive image had greater impact on consumer satisfaction than the affective image had. Second, consumer satisfaction had a significant effect on the revisit intention in the test, which indicates that farm party venues are required to find a way to boost the satisfaction of tourists in order to encourage their intentions to revisit. In order to revitalize rural tourism through farm party and raise income in rural areas, it is most important that farm party venue produce images that are differentiated from other farmhouses. In order to activate the farm party for the 6th industry, it will be possible to establish images of the farmers and utilize them in promotional marketing for the promotion of rural tourism. The present study is limited in that it did not collect feedback from farm party operators in action. With this in mind, another study is planned, focusing on those farm party operators.
The aim of the study is to explore how foreigners recognize Korean culture through Korean food and how it influences the perception of Korean restaurants, culture and satisfaction. As a result of analyzing the data, three factors in the Korean culture of restaurants were obtained: style, flavor and affection. With multiple regression analysis, all three hypotheses were supported. Style was the most important contributor to the image of Korean restaurants and culture, followed by affection and flavor. The image of Korean culture has significant influence on satisfaction. Major recommendations of this study can be outlined as follows: First, among style, flavor and affection, style was a major determinant of the image of Korean culture; hence, in order to enhance the image of Korean restaurants and culture, style needs to be emphasized. Second, as the image of Korean culture has significant influence on satisfaction, the images of Korean culture should be well displayed and maintained to boost this satisfaction.
The optical character recognition (OCR) is a technique to extract and recognize texts from images. It is an important preprocessing step in data analysis since most actual text information is embedded in images. Many OCR engines have high recognition accuracy for images where texts are clearly separable from background, such as white background and black lettering. However, they have low recognition accuracy for images where texts are not easily separable from complex background. To improve this low accuracy problem with complex images, it is necessary to transform the input image to make texts more noticeable. In this paper, we propose a method to segment an input image into text lines to enable OCR engines to recognize each line more efficiently, and to determine the final output by comparing the recognition rates of CLAHE module and Two-step module which distinguish texts from background regions based on image processing techniques. Through thorough experiments comparing with well-known OCR engines, Tesseract and Abbyy, we show that our proposed method have the best recognition accuracy with complex background images.
이메일무단수집거부
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.