• 제목/요약/키워드: 이미지 향상

검색결과 1,784건 처리시간 0.037초

개념기반 이미지 검색 시스템을 위한 도메인 온톨로지 구축 (Building the Domain Ontology for Content Based Image Retrieval System)

  • 공현장;김원필;오군석;김판구
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2002년도 추계학술발표논문집 (상)
    • /
    • pp.81-84
    • /
    • 2002
  • 멀티미디어 분야가 급성장하면서 좀더 효율적으로 멀티미디어 자료의 저장, 처리, 검색을 위한 연구가 진행되고 있다. 특히, 내용기반 시각정보 검색에 있어 지능형 시스템(Intelligent System)을 접목하여 의미적 접근을 시도하는 I-CBIR(Intelligent-Content Based Image Retrieval)에 관한 연구가 진행되고 있다. 또한, 내용기반 이미지검색 시스템에 온톨로지(Ontology)의 이론을 적용하여 이미지에 의미를 부여하여 개념적 검색이 가능하도록 노력하고 있다. 이러한 연구에서 적용된 대형의 온톨로지는 이미지 검색 시스템에 적합하지 않게 너무 방대한 정보를 가지고 있으며, 또한 시대적 변화에 대응하지 못하여 I-CBIR 시스템에서 그 효율성을 제대로 발휘하지 못하고 있다. 따라서 본 논문에서는 많은 대형 온톨로지 중에서 WordNet을 선택하여, WordNet의 구축 방법에 기반한 자동차(Car)에 대한 도메인 온톨로지(Domain Ontology)를 구축해보고, 구축된 도메인 온톨로지를 적용함으로써 더 향상된 I-CBIR 시스템이 되도록 하였다.

  • PDF

주석 기반 검색 기법을 이용한 멀티미디어 데이터베이스 시스템 (A Multimedia Database System using Method of annotation-based retrieval)

  • 조경모
    • 한국산학기술학회:학술대회논문집
    • /
    • 한국산학기술학회 2010년도 춘계학술발표논문집 1부
    • /
    • pp.319-322
    • /
    • 2010
  • 본 논문에서는 특징기반 검색을 이용하여 대용량의 비디오 데이터에 대한 사용자의 다양한 의미검색을 지원하는 에이전트 기반에서의 자동화되고 통합된 비디오 의미기반 검색 시스템을 제안한다. 사용자의 기본적인 질의를 분석하고 질의에 의해 추출된 키 프레임의 이미지를 사용자가 선택함으로써 인덱싱 에이전트는 추출된 키 프레임의 주석에 대한 의미를 더욱 구체화시킨다. 또한, 사용자에 의해 선택된 키 프레임은 특징기반 검색의 질의 이미지가 되고 인덱싱 에이전트는 제안하는 다중 분할 칼라 히스토그램 기법을 통해 질의 이미지와 데이터베이스의 키 프레임들을 비교한 후 가장 유사한 키 프레임 이미지를 검색하여 사용자에게 디스플레이한다. 제안하여 구현된 시스템은 현저히 향상된 성능을 보였다.

  • PDF

글자 수 정보를 이용한 이미지 내 글자 영역 검출 방법 (Scene Text Detection with Length of Text)

  • 김영우;김원준
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2022년도 추계학술대회
    • /
    • pp.177-179
    • /
    • 2022
  • 딥러닝의 발전과 함께 합성곱 신경망 기반의 이미지 내 글자 영역 검출(Scene Text Detection) 방법들이 제안됐다. 그러나 이러한 방법들은 대부분 데이터셋이 제공하는 단어의 위치 정보만을 이용할 뿐 글자 영역이 갖는 고유한 정보인 글자 수는 활용하지 않는다. 따라서 본 논문에서는 글자 수 정보를 학습하여 효과적으로 이미지 내의 글자 영역을 검출하는 모듈을 제안한다. 제안하는 방법은 간단한 합성곱 신경망으로 구성된 이미지 내 글자 영역 검출 모델에 글자 수를 예측하는 모듈을 추가하여 학습을 진행하였다. 글자 영역 검출 성능 평가에 널리 사용되는 ICDAR 2015 데이터셋을 통해 기존 방법 대비 성능이 향상됨을 보였고, 글자 수 정보가 글자 영역을 감지하는 데 유효한 정보임을 확인했다.

  • PDF

정확도 향상을 위한 단백질 2-DE 이미지 정보 분석 프레임워크 (A framework for accuracy improvement in protein 2-DE image analysis)

  • 김연화;심정은;이원석
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2009년도 추계학술발표대회
    • /
    • pp.741-742
    • /
    • 2009
  • 단백질 2-DE 이미지 분석은 가장 널리, 가장 오랫동안 사용되고 있는 기술로서 샘플에 들어있는 수천 개에 달하는 단백질을 저한 비용으로 효과적으로 분리하는 장점을 가지고 있다. 하지만 단백질 자체가 가지고 있는 불안정성과 2-DE 실험이 가지고 있는 근본적인 문제점으로 인하여 2-DE 이미지 분석결과는 정확도가 낮아지게 된다. 따라서 이 논문에서는 데이터마이닝 기법을 사용한 "기준점 자동 추출 모듈"과 "확률기반 매칭 조정 모듈"로 구성된 이미지 정보 분석을 위한 프레임 워크를 제안하였으며 실제 데이터에 대한 실험을 통하여 제안한 방법의 타당성을 검증하였다.

위키피디아 의미정보를 이용한 태깅된 웹 이미지 검색 (Tagged Web Image Retrieval with Wikipedia Semantic Information)

  • 이성재;조수선
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2011년도 추계학술발표대회
    • /
    • pp.361-364
    • /
    • 2011
  • 오늘날, 웹 공간에서는 사진과 같은 멀티미디어 자료를 공유하기 위하여 다양한 방법으로 문서의 정보를 표현하고 있다. 이러한 정보를 이용하기 위해 제목, 내용등에서 형태소 분석을 통해 의미가 있는 단어들을 이용하는 경우도 있지만 그 문서 혹은 자료와 관련있는 태그를 기입하고 활용하는 것이 보편화 되어 있다. 본 연구에서는 위키피디아 문서를 이용하여 이미지 태그들 사이의 연관성을 활용하여 이미지 검색 순위를 조정하였다. 약 1000만건의 문서로 이루어진 위키피디아를 이용하여 태그들의 연관성을 계산하였으며, 실험결과 태그 기반의 이미지를 검색 할 때 향상된 결과를 얻을 수 있었다.

딥러닝 학습용 집적화된 데이터 증강 자동화 도구 개발 (Development of integrated data augmentation automation tools for deep learning)

  • 장찬호;이서영;박구만
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2021년도 추계학술대회
    • /
    • pp.283-286
    • /
    • 2021
  • 4차 산업혁명을 맞이해 최근 산업 및 기술 영역에서는 인공지능을 이용한 생산력 향상, 자동화 등 딥러닝의 보편화가 빠르게 진행되고 있다. 또한, 딥러닝의 성능을 도출하기 위해서는 수많은 양의 학습용 데이터가 필요하며 그 데이터의 양은 딥러닝 모델의 성능과 정비례한다. 이에 본 작품은 최신형 영상처리 Library인 Albumentations를 이용하여 영상처리 알고리즘을 이용하여 이미지를 증강하고, 이미지 데이터 크롤링 기능을 통해 Web에서 영상 데이터를 수집을 자동화하며, Label Pix를 연동하여 수집한 데이터를 라벨링 한다. 더 나아가 라벨링 된 데이터의 증강까지 포함하여 다양한 증강 자동화를 한 인터페이스에 집적시켜 딥러닝 모델을 생성할 때 데이터 수집과 전처리를 수월하게 한다. 또한, Neural Net 기반의 AdaIN Transfer를 이용하여 이미지를 개별적으로 학습하지 않고 Real time으로 이미지의 스타일을 옮겨올 수 있도록 하여 그림 데이터의 부족 현상을 해결한다.

  • PDF

2D super resolution network를 이용한 Point Cloud 데이터 개선 (Improvement of point cloud data using 2D super resolution network)

  • 박성환;김규헌
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2021년도 하계학술대회
    • /
    • pp.16-18
    • /
    • 2021
  • 미디어 기술은 사용자가 더욱 몰입감을 느낄 수 있는 방향으로 개발되어 왔다. 이러한 흐름에 따라 기존의 2D 이미지에 비해 깊이감을 느낄 수 있는 증강 현실, 가상 현실 등 3D 공간 데이터를 활용하는 미디어가 주목을 받고 있다. 포인트 클라우드는 수많은 3차원 좌표를 가진 여러 개의 점들로 구성된 데이터 형식이므로 각각의 점들에 대한 좌표 및 색상 정보를 사용하여 3D 미디어를 표현한다. 고정된 크기의 해상도를 갖는 2D 이미지와 다르게 포인트 클라우드는 포인트의 개수에 따라 용량이 유동적이며, 이를 기존의 비디오 코덱을 사용하여 압축하기 위해 국제 표준기구인 MPEG(Moving Picture Experts Group)에서는 Video-based Point Cloud Compression (V-PCC)을 제정하였다. V-PCC는 3D 포인트 클라우드 데이터를 직교 평면 벡터를 이용하여 2D 패치로 분해하고 이러한 패치를 2D 이미지에 배치한 다음 기존의 2D 비디오 코덱을 사용하여 압축한다. 본 논문에서는 앞서 설명한 2D 패치 이미지에 super resolution network를 적용함으로써 3D 포인트 클라우드의 성능 향상하는 방안을 제안한다.

  • PDF

변환학습을 이용한 장면 분류 (The Combined Effect and Therapeutic Effects of Color)

  • 신성윤;신광성;남수태
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2021년도 춘계학술대회
    • /
    • pp.338-339
    • /
    • 2021
  • 본 논문에서는 변환 학습을 기반으로 한 다중 클래스 이미지 장면 분류 방법을 제안한다. 이미지 분류를 위해 대형 이미지 데이터 세트 ImageNet에 대해 사전 학습 한 ResNet (ResNet) 모델을 사용하는 방법이다. CNN 모델의 이미지 분류 방법에 비해 분류 정확도 및 효율성을 크게 향상시킬 수 있다.

  • PDF

마코프 특징을 이용하는 고속 위조 영상 검출 알고리즘 (Fast Image Splicing Detection Algorithm Using Markov Features)

  • 김수민;박천수
    • 전기전자학회논문지
    • /
    • 제22권2호
    • /
    • pp.227-232
    • /
    • 2018
  • 이미지 편집 툴의 발전으로 일반 사용자도 원본 이미지를 조작하여 실제와 다른 영상 정보를 전달하는 것이 가능하게 되었다. 이러한 사회적 변화에 따라 이미지의 신뢰도는 매우 낮아지게 되었고 이미지의 조작여부를 검출하는 시스템의 필요성이 제기되고 있다. 본 논문에서는 마코프 특징을 이용하여 이미지 조작 여부를 검출하는 알고리즘을 제안한다. 제안하는 방법은 전체 입력 이미지에서 마코프 특징을 추출하고, 그 중 위조 여부 검출에 사용되지 않는 불필요한 특징을 제거한다. 따라서 제안하는 기술은 위조 검출에 사용되는 마코프 특징의 수를 감소시켜 전체 검출 속도를 향상시키는 효과가 있다. 실험을 통해 제안하는 방법은 상대적으로 낮은 복잡도로 우수한 위조 검출 성능을 보임을 확인하였다.

이미지 코드 인식을 위한 개선된 전처리 알고리즘 (Enhanced Preprocessing Algorithm for Image Code Recognition)

  • 임상오;김동철;정철호;한탁돈
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2006년도 가을 학술발표논문집 Vol.33 No.2 (B)
    • /
    • pp.480-484
    • /
    • 2006
  • 본 논문에서는 코드 영역을 분리하기 위한 전처리 과정 중 코드 추출에 적합한 자동 이진화 알고리즘을 제안하여, 반복과정을 제거하고 정확한 코드영역 추출로 인식률 및 속도를 향상 시켰다. 배경이 복잡한 이미지가 들어 올 경우 기존의 전역 평균 임계값이나 클래스간의 분산을 이용한 방법으로는 이미지 코드 영역을 찾아 낼 수 없었던 문제를 해결하기 위하여 이미지 코드 주변에 배경과 구분을 두기 위한 흰색 영역이 있다는 점을 착안, 상하좌우 방향 바깥쪽에서 안쪽으로 탐색하여 가장 밝은 값을 갖는 값을 찾아내고 찾아낸 그룹 중 가장 낮은 값을 임계값으로 선택하여 최적의 임계값을 찾아 내었고 이를 통해 복잡한 영상 내에서도 이미지 코드 영역을 찾아낼 수 있다. 제안된 이진화 알고리즘의 성능을 평가하기 위하여 2000장의 테스트 이미지에 적용한 결과, 기존의 이진화 알고리즘들 보다 정확성뿐만 아니라 속도 면에서도 우수한 것을 확인하였다.

  • PDF