기존의 침입탐지 시스템에서는 오용탐지모델이 널리 사용되고 있다. 이 모델은 낮은 오판율(False Alarm rates)을 가지고 있으나, 새로운 공격에 대해 전문가시스템(Expert Systems)에 의한 규칙추가를 필요로 한다. 그리고 그 규칙과 완전히 일치되는 시그너처만 공격으로 탐지하므로 변형된 공격을 탐지하지 못한다는 문제점을 가지고 있다 본 논문에서는 이러한 문제점을 보완하기 위해 주성분분석(Principle Component Analysis; 이하 PCA)과 서포트 벡터 머신(Support Vector Machines; 이하 SVM)을 이용한 침입탐지 시스템을 제안한다. 네트워크 상의 패킷은 PCA를 이용하여 결정된 주성분 공간에서 해석되고, 정상적인 흐름과 비정상적인 흐름에 대한 패킷이미지패턴으로 정규화 된다. 이러한 두 가지 클래스에 대한 SVM 분류기를 구현한다. 개발하는 침입탐지 시스템은 알려진 다양한 침입유형뿐만 아니라, 새로운 변종에 대해서도 분류기의 유연한 반응을 통하여 효과적으로 탐지할 수 있다.
연구목적: 화재 탐지시 불꽃/연기의 오탐지율이 높은 것을 확인하고 오탐지율을 낮추기 위해 화재 상황을 인식하여 분류하는 방법과 데이터셋을 제안하고자 한다. 연구방법: 동영상을 학습데이터로 활용하여 화재 상황의 특징을 추출하여 분류모델에 적용하고, 평가는 한국정보화진흥원(NIA)에서 진행하는 화재 데이터셋을 이용하여 Yolov8, Slowfast의 모델 성능을 비교 및 분석하였다. 연구결과: YOLO는 배경의 영향에 따라 탐지 성능이 민감하게 변화하며, 화재의 규모가 너무 크거나 작을 때에도 화재를 제대로 감지하지 못했다. SlowFast는 동영상의 시간 축을 같이 학습하기 때문에 비정형 객체에 대해 주변이 흐리거나 밝아 형상을 명확하게 유추할 수 없는 상황에서도 우수하게 화재를 탐지하는 것을 확인했다. 결론: 화재 탐지율은 이미지 데이터 방식보다는 동영상 기반의 인공지능 인식(Detection) 모델을 활용했을 때 더 적절했음을 확인했다.
본 논문은 악성코드의 이미지화와 전이학습을 이용한 악성코드 분류 방안을 제안한다. 공개된 악성코드는 쉽게 재사용 또는 변형이 가능하다. 그런데 전통적인 악성코드 탐지 기법은 변형된 악성코드를 탐지하는데 취약하다. 동일한 부류에 속하는 악성코드들은 서로 유사한 이미지로 변환된다. 따라서 제안하는 기법은 악성코드를 이미지화하고 이미지 분류 분야에서 검증된 딥러닝 모델을 사용하여 악성코드의 부류를 분류한다. Malimg 데이터셋에 대해 VGG-16 모델을 이용하여 실험한 결과 98% 이상의 분류 정확도를 나타냈다.
본 연구는 실시간 영상에서 정면 얼굴을 가지고 있는 이미지를 탐지하는 방법에 대한 것이다. 모든 프레임마다 얼굴 인식 등의 연산을 수행한다면 계산량과 시간이 문제이다. 우리가 제안하는 방법은 동일인이 등장하는 영상 중 동일한 얼굴을 추적하여 움직임의 차이를 이용하여 정면 이미지를 판단하는 것이다. Gaussian Mixture Model 과 Motion template 을 이용하였으며, 실험을 통해 도출된 결과는 제안 알고리즘의 유용성을 어느 정도 증명할 수 있었다.
최근 딥러닝 기술에 발전으로 스마트 시티, 자율주행 자동차, 감시, 사물인터넷 등 다양한 분야에서 활용이 되고 있으며, 이에 따라 기계를 위한 영상 압축에 대한 필요성이 대두되고 있다. 본 논문에서는 열 적외선 영상에서 기계 소비를 위한 객체 기반 압축 기법을 제안한다. 신경망의 객체 탐지 결과와 객체 크기에 따라 이미지를 객체 부분과 배경 부분으로 나누어 서로 다른 압축률로 인/디코딩 한 후, 나눠진 이미지들 다시 하나의 이미지로 합치는 기법을 사용하여 압축하였으며, 이는 압축효율은 높이면서 객체 탐지 성능을 높게 유지한다. 실험 결과, 제안하는 방법이 Pareto mAP에서 BD-rate가 -28.92%로 FLIR anchor 결과와 비교했을 때 압축효율이 뛰어나다는 것을 확인할 수 있다.
본 연구에서는 Dilated U-Net 기반의 이미지 복원기법을 통해 콘크리트 균열 추출 성능 개선 방안을 제안한다. 콘크리트 균열은 구조물의 미관상의 문제뿐 아니라 추후 큰 안전사고의 원인이 될 수 있어 초기대응이 중요하다. 현재는 점검자가 직접 육안으로 검사하는 외관 검사법이 주로 사용되고 있지만, 이는 정확성 및 비용, 시간, 그리고 안전성 면에서 한계를 갖고 있다. 이에 콘크리트 구조물 표면에 대해 획득한 영상 처리 기법을 사용한 검사 방식 도입의 관심이 늘어나고 있다. 또한, 딥러닝 기술의 발달로 딥러닝을 적용한 영상처리의 연구 역시 활발하게 진행되고 있다. 본 연구는 콘크리트 균열 추개선출 성능 개선을 위해 Dilated U-Net 기반의 이미지 복원기법을 적용하는 방안을 제안하였고 성능 검증 결과, 기존 U-Net 기반의 정확도가 98.78%, 조화평균 82.67%였던 것에 비해 정확도 99.199%, 조화평균 88.722%로 성능이 되었음을 확인하였다.
디지털 기술과 정보통신 기술이 발전하면서 디지털 콘텐츠의 불법복제 및 유통으로 인한 저작권 침해 피해가 증가하고 있다. 저작권 침해 문제를 예방하기 위해 다양한 디지털 워터마킹 기술이 제안되었지만, 디지털 이미지 워터마킹은 이미지에 기하학적 변형을 가하면 삽입된 워터마크가 훼손되어 탐지가 어렵다는 문제가 있다. 본 연구에서는 왜곡 공격에 강인한 상관관계 측정 기반 워터마킹 기법을 제안한다. 제안한 방식은 교차 상관 기법을 이용해 이미지와 워터마크의 상관관계를 계산하고 임계값과 비교하여 공간 영역에서의 비가시성 워터마크의 존재 여부를 검증할 수 있는 디지털 워터마킹 방법이다. 실험 결과에 따르면 표준편차 120의 가우시안 노이즈 공격을 가해도 원본 워터마크와 0.1 이상의 상관관계를 보이며, 종래의 방식보다 높은 탐지 성능을 나타냈다.
일반적으로 화재 감지 시스템은 정확하고 빠르게 화재를 감지하는 것은 어려운 문제 중 하나이다. 본 논문에서는 U-net을 활용하여 기존의 화재(불) 영역 추출 기법으로 Segmentation으로 보다 정밀하게 탐지하는 기법을 제안한다. 이 기법은 화재 이미지에서 연기제거 및 색상보정을 통해 이미지를 전처리하여 화염 영역을 추출한 뒤 U-Net으로 학습시켜 이미지를 입력하면 불 영역의 Segmentation을 추출하도록 한다.
본 논문에서는 요주의 인물 식별 시스템의 서브시스템으로 SRC 기반의 실시간 정면 얼굴 탐지 시스템을 제안한다. 제안된 시스템은 개선된 피부색 탐지기를 통해 실시간으로 입력되는 영상의 이미지로부터 얼굴 탐지 범위를 축소하고, 단계형 분류기를 통해 얼굴 여부를 빠른 속도로 탐지함으로써 실시간 탐지가 가능케 하였다. 또한 최근 얼굴 인식 분야에서 성공적인 업적을 보여주고 있는 신호 처리 분야의 SRC를 이용하여 정면 얼굴, 비정면 얼굴, 그리고 비얼굴을 분류하여 정면 얼굴만을 출력함으로써 정면 얼굴 탐지율을 높힌다. 공인된 벤치마킹 데이터인 FEI Face Database을 사용하여 제안된 SRC 기반의 정면 얼굴 탐지 시스템의 성능을 실험적으로 평가한다.
본 논문에서는 요주의 인물 식별 시스템에 직접적으로 적용이 가능한 실용적 차원의 정면 얼굴 탐지 시스템을 제안한다. 제안된 시스템은 개선된 피부색 탐지기를 통해 실시간으로 입력되는 영상의 이미지로부터 얼굴 탐지 범위를 축소하고, Viola 등의 단계형 분류기를 통해 얼굴 여부를 빠른 속도로 탐지함으로써 실시간 탐지가 가능케 하였다. 또한, 마스킹을 통하여 비 정면 얼굴들을 제거함으로써 정면 얼굴만을 보다 정확하게 탐지할 수 있으며, 정면 얼굴 데이터만으로 학습된 SVDD로 최종 출력을 검증하였다. 공인된 벤치마킹 데이터인 FEI Face Database을 사용하여 제안한 SVDD 기반의 정면 얼굴 탐지 시스템의 성능을 실험적으로 평가한다.
이메일무단수집거부
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.