• 제목/요약/키워드: 이미지 탐지

검색결과 448건 처리시간 0.029초

주성분 분석과 서포트 벡터 머신을 이용한 침입 탐지 시스템 (An Intrusion Detection System Using Principle Component Analysis and Support Vector Machines)

  • 정성윤;강병두;김상균
    • 한국멀티미디어학회:학술대회논문집
    • /
    • 한국멀티미디어학회 2003년도 춘계학술발표대회논문집
    • /
    • pp.314-317
    • /
    • 2003
  • 기존의 침입탐지 시스템에서는 오용탐지모델이 널리 사용되고 있다. 이 모델은 낮은 오판율(False Alarm rates)을 가지고 있으나, 새로운 공격에 대해 전문가시스템(Expert Systems)에 의한 규칙추가를 필요로 한다. 그리고 그 규칙과 완전히 일치되는 시그너처만 공격으로 탐지하므로 변형된 공격을 탐지하지 못한다는 문제점을 가지고 있다 본 논문에서는 이러한 문제점을 보완하기 위해 주성분분석(Principle Component Analysis; 이하 PCA)과 서포트 벡터 머신(Support Vector Machines; 이하 SVM)을 이용한 침입탐지 시스템을 제안한다. 네트워크 상의 패킷은 PCA를 이용하여 결정된 주성분 공간에서 해석되고, 정상적인 흐름과 비정상적인 흐름에 대한 패킷이미지패턴으로 정규화 된다. 이러한 두 가지 클래스에 대한 SVM 분류기를 구현한다. 개발하는 침입탐지 시스템은 알려진 다양한 침입유형뿐만 아니라, 새로운 변종에 대해서도 분류기의 유연한 반응을 통하여 효과적으로 탐지할 수 있다.

  • PDF

화재 탐지 영역의 이미지와 동영상 인식 사이 인공지능 모델 성능 비교 연구 (A Comparative Study on Artificial in Intelligence Model Performance between Image and Video Recognition in the Fire Detection Area)

  • 이정록;이대웅;정서현;정상
    • 한국재난정보학회 논문집
    • /
    • 제19권4호
    • /
    • pp.968-975
    • /
    • 2023
  • 연구목적: 화재 탐지시 불꽃/연기의 오탐지율이 높은 것을 확인하고 오탐지율을 낮추기 위해 화재 상황을 인식하여 분류하는 방법과 데이터셋을 제안하고자 한다. 연구방법: 동영상을 학습데이터로 활용하여 화재 상황의 특징을 추출하여 분류모델에 적용하고, 평가는 한국정보화진흥원(NIA)에서 진행하는 화재 데이터셋을 이용하여 Yolov8, Slowfast의 모델 성능을 비교 및 분석하였다. 연구결과: YOLO는 배경의 영향에 따라 탐지 성능이 민감하게 변화하며, 화재의 규모가 너무 크거나 작을 때에도 화재를 제대로 감지하지 못했다. SlowFast는 동영상의 시간 축을 같이 학습하기 때문에 비정형 객체에 대해 주변이 흐리거나 밝아 형상을 명확하게 유추할 수 없는 상황에서도 우수하게 화재를 탐지하는 것을 확인했다. 결론: 화재 탐지율은 이미지 데이터 방식보다는 동영상 기반의 인공지능 인식(Detection) 모델을 활용했을 때 더 적절했음을 확인했다.

악성코드 이미지화와 전이학습을 이용한 악성코드 분류 기법 (Malware Classification Method using Malware Visualization and Transfer Learning)

  • 이종관;이민우
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2021년도 춘계학술대회
    • /
    • pp.555-556
    • /
    • 2021
  • 본 논문은 악성코드의 이미지화와 전이학습을 이용한 악성코드 분류 방안을 제안한다. 공개된 악성코드는 쉽게 재사용 또는 변형이 가능하다. 그런데 전통적인 악성코드 탐지 기법은 변형된 악성코드를 탐지하는데 취약하다. 동일한 부류에 속하는 악성코드들은 서로 유사한 이미지로 변환된다. 따라서 제안하는 기법은 악성코드를 이미지화하고 이미지 분류 분야에서 검증된 딥러닝 모델을 사용하여 악성코드의 부류를 분류한다. Malimg 데이터셋에 대해 VGG-16 모델을 이용하여 실험한 결과 98% 이상의 분류 정확도를 나타냈다.

  • PDF

실시간 영상에서 모션 벡터 차이를 이용한 정면얼굴 이미지 탐지 (Front face image detection using difference of motion vector on Real Video)

  • 김동현;정주신;김현정;원일용
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2012년도 추계학술발표대회
    • /
    • pp.461-463
    • /
    • 2012
  • 본 연구는 실시간 영상에서 정면 얼굴을 가지고 있는 이미지를 탐지하는 방법에 대한 것이다. 모든 프레임마다 얼굴 인식 등의 연산을 수행한다면 계산량과 시간이 문제이다. 우리가 제안하는 방법은 동일인이 등장하는 영상 중 동일한 얼굴을 추적하여 움직임의 차이를 이용하여 정면 이미지를 판단하는 것이다. Gaussian Mixture Model 과 Motion template 을 이용하였으며, 실험을 통해 도출된 결과는 제안 알고리즘의 유용성을 어느 정도 증명할 수 있었다.

열 적외선 영상에서 기계를 위한 객체 기반 압축 기법 (Object-based Compression Method for Machine Vision in Thermal Infrared Image)

  • 이예지;김신;윤경로;임한신;추현곤;정원식
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2021년도 하계학술대회
    • /
    • pp.1-3
    • /
    • 2021
  • 최근 딥러닝 기술에 발전으로 스마트 시티, 자율주행 자동차, 감시, 사물인터넷 등 다양한 분야에서 활용이 되고 있으며, 이에 따라 기계를 위한 영상 압축에 대한 필요성이 대두되고 있다. 본 논문에서는 열 적외선 영상에서 기계 소비를 위한 객체 기반 압축 기법을 제안한다. 신경망의 객체 탐지 결과와 객체 크기에 따라 이미지를 객체 부분과 배경 부분으로 나누어 서로 다른 압축률로 인/디코딩 한 후, 나눠진 이미지들 다시 하나의 이미지로 합치는 기법을 사용하여 압축하였으며, 이는 압축효율은 높이면서 객체 탐지 성능을 높게 유지한다. 실험 결과, 제안하는 방법이 Pareto mAP에서 BD-rate가 -28.92%로 FLIR anchor 결과와 비교했을 때 압축효율이 뛰어나다는 것을 확인할 수 있다.

  • PDF

Dilated U-Net에 기반한 이미지 복원 기법을 이용한 콘크리트 균열 탐지 개선 방안 (Improvement of concrete crack detection using Dilated U-Net based image inpainting technique)

  • 김수민;손정모;김도수
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2021년도 제63차 동계학술대회논문집 29권1호
    • /
    • pp.65-68
    • /
    • 2021
  • 본 연구에서는 Dilated U-Net 기반의 이미지 복원기법을 통해 콘크리트 균열 추출 성능 개선 방안을 제안한다. 콘크리트 균열은 구조물의 미관상의 문제뿐 아니라 추후 큰 안전사고의 원인이 될 수 있어 초기대응이 중요하다. 현재는 점검자가 직접 육안으로 검사하는 외관 검사법이 주로 사용되고 있지만, 이는 정확성 및 비용, 시간, 그리고 안전성 면에서 한계를 갖고 있다. 이에 콘크리트 구조물 표면에 대해 획득한 영상 처리 기법을 사용한 검사 방식 도입의 관심이 늘어나고 있다. 또한, 딥러닝 기술의 발달로 딥러닝을 적용한 영상처리의 연구 역시 활발하게 진행되고 있다. 본 연구는 콘크리트 균열 추개선출 성능 개선을 위해 Dilated U-Net 기반의 이미지 복원기법을 적용하는 방안을 제안하였고 성능 검증 결과, 기존 U-Net 기반의 정확도가 98.78%, 조화평균 82.67%였던 것에 비해 정확도 99.199%, 조화평균 88.722%로 성능이 되었음을 확인하였다.

  • PDF

왜곡 공격에 강인한 디지털 워터마킹 기법 (Digital Watermarking Techniques Robust to Distortion Attacks)

  • 김수경;전유란;류정화;이일구
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2024년도 춘계학술발표대회
    • /
    • pp.345-346
    • /
    • 2024
  • 디지털 기술과 정보통신 기술이 발전하면서 디지털 콘텐츠의 불법복제 및 유통으로 인한 저작권 침해 피해가 증가하고 있다. 저작권 침해 문제를 예방하기 위해 다양한 디지털 워터마킹 기술이 제안되었지만, 디지털 이미지 워터마킹은 이미지에 기하학적 변형을 가하면 삽입된 워터마크가 훼손되어 탐지가 어렵다는 문제가 있다. 본 연구에서는 왜곡 공격에 강인한 상관관계 측정 기반 워터마킹 기법을 제안한다. 제안한 방식은 교차 상관 기법을 이용해 이미지와 워터마크의 상관관계를 계산하고 임계값과 비교하여 공간 영역에서의 비가시성 워터마크의 존재 여부를 검증할 수 있는 디지털 워터마킹 방법이다. 실험 결과에 따르면 표준편차 120의 가우시안 노이즈 공격을 가해도 원본 워터마크와 0.1 이상의 상관관계를 보이며, 종래의 방식보다 높은 탐지 성능을 나타냈다.

U-Net을 이용한 화염 Segmentation 추출기법 (Flame Segmentation Extraction Method using U-Net)

  • 유수빈;신영찬;김종현
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2023년도 제67차 동계학술대회논문집 31권1호
    • /
    • pp.391-394
    • /
    • 2023
  • 일반적으로 화재 감지 시스템은 정확하고 빠르게 화재를 감지하는 것은 어려운 문제 중 하나이다. 본 논문에서는 U-net을 활용하여 기존의 화재(불) 영역 추출 기법으로 Segmentation으로 보다 정밀하게 탐지하는 기법을 제안한다. 이 기법은 화재 이미지에서 연기제거 및 색상보정을 통해 이미지를 전처리하여 화염 영역을 추출한 뒤 U-Net으로 학습시켜 이미지를 입력하면 불 영역의 Segmentation을 추출하도록 한다.

  • PDF

SRC 기반의 실시간 정면 얼굴 탐지 (A Real-time Frontal Face Detection Based on SRC)

  • 강봉수;오승근;이종욱;박대희
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2011년도 한국컴퓨터종합학술대회논문집 Vol.38 No.1(A)
    • /
    • pp.458-461
    • /
    • 2011
  • 본 논문에서는 요주의 인물 식별 시스템의 서브시스템으로 SRC 기반의 실시간 정면 얼굴 탐지 시스템을 제안한다. 제안된 시스템은 개선된 피부색 탐지기를 통해 실시간으로 입력되는 영상의 이미지로부터 얼굴 탐지 범위를 축소하고, 단계형 분류기를 통해 얼굴 여부를 빠른 속도로 탐지함으로써 실시간 탐지가 가능케 하였다. 또한 최근 얼굴 인식 분야에서 성공적인 업적을 보여주고 있는 신호 처리 분야의 SRC를 이용하여 정면 얼굴, 비정면 얼굴, 그리고 비얼굴을 분류하여 정면 얼굴만을 출력함으로써 정면 얼굴 탐지율을 높힌다. 공인된 벤치마킹 데이터인 FEI Face Database을 사용하여 제안된 SRC 기반의 정면 얼굴 탐지 시스템의 성능을 실험적으로 평가한다.

SVDD 기반의 실시간 정면 얼굴 탐지 (A Real-time Frontal Face Detection Based on SVDD)

  • 강봉수;오승근;박승진;박대희
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2011년도 한국컴퓨터종합학술대회논문집 Vol.38 No.1(C)
    • /
    • pp.358-361
    • /
    • 2011
  • 본 논문에서는 요주의 인물 식별 시스템에 직접적으로 적용이 가능한 실용적 차원의 정면 얼굴 탐지 시스템을 제안한다. 제안된 시스템은 개선된 피부색 탐지기를 통해 실시간으로 입력되는 영상의 이미지로부터 얼굴 탐지 범위를 축소하고, Viola 등의 단계형 분류기를 통해 얼굴 여부를 빠른 속도로 탐지함으로써 실시간 탐지가 가능케 하였다. 또한, 마스킹을 통하여 비 정면 얼굴들을 제거함으로써 정면 얼굴만을 보다 정확하게 탐지할 수 있으며, 정면 얼굴 데이터만으로 학습된 SVDD로 최종 출력을 검증하였다. 공인된 벤치마킹 데이터인 FEI Face Database을 사용하여 제안한 SVDD 기반의 정면 얼굴 탐지 시스템의 성능을 실험적으로 평가한다.