유비쿼터스 컴퓨팅 환경으로 발전하면서 문자열 위주의 획일적 형태에서 음성, 이미지 등 다양한 형태의 데이터들을 처리하게 되었으며, 또한 빠르고 정확하게 처리되기를 요구하고 있다. 현재 데이터 처리 중심부에 있는 Database는 대부분이 Relation DB 위주로 되어 있어 Datafile 에 데이터를 저장하고 있어 대용량의 이미지 데이터 처리에 적합하지가 않다. 본 논문에서는 이러한 단점을 보강하기 위해 Relation DB 하에서 대용량의 이미지 데이터 처리를 가능하게 하는 기법을 제시한다. 이렇게 함으로써 이미지 데이터를 Upload, Download 시 따른 응답 속도를 보장 할 수 있도록 LRU 알고리즘 기반으로 제안을 하였다. 본 논문에서 제안된 기법은 시뮬레이션을 통해 (1)기존 RDB(Relational Database)의 BLOB(Binary Large Object)필드를 이용한 이미지 데이터 처리 방식, (2)별도의 저장 공간에 이미지 데이터를 입/출하는 방식, (3)별도의 저장 공간에 이미지 데이터를 입/출력할 때 LRU(least Recently Used)알고리즘을 이용하는 방식에 대하여 성능 평가를 하였다. 그 결과 (3)별도의 저장 공간에 LRU(least Recently Used)알고리즘을 이용하여 입/출력하는 방식이 (1)기존의 RDB(Relational Database)형태에 BLOB(binary large object)필드를 이용한 것 보다 성능이 높음을 확인하였다.
본 연구에서는 카오스이론을 기초로하여 이미지를 암호화 할 수 있도록 하는 LCI(Logistic Chaos Cryptosystem Image)를 제안한다. 로지스틱맵을 이용한 이미지 암호화 기법은 초기 조건에 민감한 카오스의 특징을 이용하였다. 실험결과 제안된 LCI(Logistic Chaos Cryptosystem Image) 기법을 통해 이미지는 카오스적으로 표현되었으며, 소스이미지와 암호 이미지 사이는 관련성이 없었다. 향후 안전성이나 처리속도에 대한 검증과 표준화 문제 및 멀티미디어 자료 등에 대한 암호화 기법을 계속 연구해야 할 것이다. 실험결과 제안된 LCI 기법을 통해 암호문은 카오스적으로 표현되었으며, 소스이미지와 암호이미지 사이에 어떠한 동질성도 찾아 볼 수 없었다. 향후 안전성이나 처리속도에 대한 검증과 표준화 문제 및 멀티미디어 자료에 대한 암호화 기법을 계속 연구해야 할 것이다.
최근 이미지들이 의료, 군사, 산업등 많은 분야에서 사용되고, 다양한 정보를 담고 있다. 하지만 유출시 많은 문제를 야기 시킬 수가 있으며, 컴퓨팅의 발전으로 이미지의 해상도는 점점 향상되고 있어서 예전보다 정확하고 많은 정보가 노출될 수 있다. 이러한 문제를 해결하기 위하여 이미지 암호화에 관한 다양한 기법들이 소개 되었다. 하지만 이러한 기법들은 작은 크기나 적은 색 정보에서 가능한 기법들이 대부분이었다. 그리고 현재 많이 사용되는 다중코어나 클라우드 컴퓨팅 환경에서 효과적으로 사용할 수 있는 기법들에 대한 연구가 활발히 이루지지 않았다. 본 논문에서는 다중코어나 클라우드 컴퓨팅 환경에서 효과적으로 사용될 수 있는 병렬 이미지 암호화 기법을 제안한다. 병렬 연산을 위해 이미지를 작은 이미지 단위로 나눌 때 발생할 수 있는 Jigsaw puzzle 공격에 취약점을 노출하지 않도록 일정한 크기로 나누어서 처리하는 기법대신에 다양한 크기로 나눠서 처리하는 기법을 제안하고 구현 및 검증하고자 한다.
이미지 데이터는 텍스트 데이터와는 달리 다양한 색상과 모양, 질감과 같은 비정형적인 특징을 가진다. 따라서 이미지 데이터베이스는 텍스트 기반의 전통 데이터베이스와는 다른 모델링 방법과 질의, 검색 방법을 사용한. 특히, 내용 기반 이미지 검색에서의 검색 속도와 정확도를 향상시키기 위해서는 새로운 복합 질의문 계획 생성 기법이 필요하다. 본 논문에서는 이를 위해 먼저, 단일 조건을 갖는 시각 질의에 대한 처리 기법들을 토대로 여러 조건을 갖는 복합 질의를 처리하기 위한 복합 질의문 계획 생성기법인 SSCC(Similarity Search for Conjunction Combination Query) 알고리즘을 제안한다. SSCC는 이미지 데이터베이스 검색 시스템에서 복합 질의를 처리하기 위한 질의 최적화 과정에서 질의 수행 시간과 투플 I/O를 최소화하는 질의문 계획을 생성하기 위해 사용된다. SSCC 알고리즘은 복합질의를 단일 질의들로 준해하고 퍼지 집합 이론을 도입하여 단일 질의의 결과들을 통합한다. 논문에서 연구된 내용 기반 복합 질의문 계획 생성 기법은 특정 이미지 영역에 국한되지 않으며 다양한 종류의 시각 질의를 수행하기 위한 효율적인 질의문 계획 생성 기법으로 사용될 수 있다.
본 논문은 내용기반 이미지 검색을 위한 새로운 특징벡터 추출 기법을 제안한다. 제안된 기법은 주어진 이미지의 모양정보에 수학적 회귀를 적용하여 추출되는 특징벡터 양을 최소화하고 이를 이용하여 보다 정확한 내용검색이 이루어지도록 한다. 또한 제안된 기법은 실제 구현을 통한 여러 이미지 집합에 대한 실험 결과에서 기존의 기법보다 우수한 검색결과를 나타냄을 보인다.
SSIM은 인간의 시각 체계가 이미지의 구조적 정보에 예민하다는 점을 이용하여 여러 가지 구조적 정보들의 유사성을 계산함으로써 이미지를 평가하는 대표적인 이미지 평가 기법이다. 하지만 SSIM은 컬러 이미지들에 대해 색 차이를 고려하지 못하는 문제가 있다. 이러한 문제를 해결하기 위해, HSI 색 공간을 활용한 SHSIM 기법이 제안되었으나 이 기법 또한 두 컬러 이미지 간 인지적인 색 차이를 충분히 반영하지는 못하고 있다. 본 논문에서는 CIE Lab 색 공간을 도입하여 대응 되는 픽셀들의 인지적 색 차이를 계산하여 이미지 평가에 활용하는 방법을 제안한다. 제안하는 기법의 성능을 평가하기 위해, 이미지 평가 분야에서 가장 많이 알려진 네 가지의 데이터베이스와 네 종류의 평가 기준들을 이용하였다. 실험 결과에서는 제안하는 기법이 다른 기법들보다 인간 시각 체계와 더 상관성이 높다는 것을 보여줌으로써 성능을 증명하였다.
최근 네트워크 및 카메라 모듈의 발전으로 인해 생성되는 이미지 데이터의 양이 대용량화 되고 있으며, 이미지 데이터를 이용한 이미지 검색 서비스가 제공되고 있다. 이미지 검색 서비스를 제공하기 위해 이미지 데이터베이스 구축이 요구된다. 효율적인 데이터베이스 구축을 위해 Bow 기법을 이용하여 데이터의 차수를 낮춘 후 이미지 벡터를 저장하는 방식을 사용한다. 그러나 이미지 데이터의 수가 급격히 증가하여 오랜 수행 시간을 요구한다. 본 논문에서 인-메모리 기반 분산 프레임워크인 스파크를 이용한 이미지 벡터 생성 과정을 분산 설계하였다. 실험을 통해 제안하는 분산 처리 기법이 기존방법에 비해 효율적임을 보인다.
최근 이미지 분류, 자율 주행 등 다양한 분야에 인공지능 기술이 접목됨에 따라 인공지능 기술을 이용한 새로운 위협이 등장하고 있다. 적대적 공격 중 단일 픽셀 공격은 이미지의 픽셀 하나를 왜곡하여 인공지능의 올바른 분류를 방해하는 공격 기법이다. 본 논문은 단일 픽셀 공격을 완화하는 이미지 처리 기법을 제안한다. 실험 결과에 따르면 제안한 방법을 적용하면 이미지의 사이즈를 27×27 로 조절하였을 때 100 개의 단일 픽셀 공격 이미지 중 94 개를 복구하였으며, 이미지의 신뢰도를 68.89% 개선하였다.
최근, 소셜 미디어 공유 시스템의 사용자-참여형 아키텍쳐를 구성하는 핵심요소인 폭소노미에 기반하여 이미지를 공유하고 검색하고자 하는 다양한 시도들이 진행되고 있다. 그러나 폭소노미에 기반한 현재의 이미지 공유 시스템에서는 태그의 문법적, 의미적 모호성과 이미지에 대한 태그들의 중요성 또는 상관관계를 고려하지 않아 태그 기반 이미지 검색시 정확성 및 신뢰성을 보장할 수 없다. 이러한 문제를 해결하기 위해, 본 논문에서는 태그간 의미관계를 이용한 이미지 태그 랭킹 기법을 활용하여 태그들을 이미지와의 관련정도에 따라 정렬하여 할당한 후, 이미지의 태그 순위를 고려하여 이미지와 질의어와의 관련성에 따라 효율적으로 이미지를 검색하기 위한 기법을 제안한다. 또한, 제안한 기법이 기존의 이미지 공유 시스템의 검색 결과보다 정확성을 높일 수 있음을 실험 예제를 통하여 확인하였다.
무선인터넷 분야는 전송속도 및 서비스를 제공받는 단말기의 특성상 콘텐츠 크기의 제약을 가지다. 그 크기란 현재 무선기기의 전송속도에 의해 정해진 것으로 앞으로 더 높은 전송속도를 가지게 된다면 상관없겠지만, 현재는 이 전송량의 한계 때문에 거의 대부분의 콘텐츠들은 이미지보다는 상대적으로 크기가 적은 텍스트 기반으로 설계되고 만들어지고 있다. 하지만, 이미지를 기반으로 하는 게임 응용분야의 경우 이와 같은 제약으로 인해 상대적으로 작은 이미지만으로 구현하고 있다. 본 논문은 현재의 콘텐츠 제약에 따르면서, 큰 이미지를 일정 패턴을 갖는 다수의 작은 이미지로 분할하는 기법을 통해 상대적으로 적은 데이터 전송량으로 이미지를 처리할 수 있는 이미지 기반의 사용자 인터페이스를 제작할 수 있는 이미지 분할 관리 기법을 제안하고, 실제 게임 구현을 통해 그 실용성을 보여준다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.